

 [image: _images/logo_cropped.svg]

Contents

	About Smuthi

	Getting started
	Installation

	Running a simulation

	Simulation guidelines
	Building blocks of a Smuthi simulation

	Physical units

	Cross sections

	Multipole cut-off

	Complex integral contours

	Automatic parameter selection

	Solver settings

	Custom particles

	Plane wave coupling

	Examples
	Tutorials

	Benchmarks

	API

	Literature

About Smuthi

Smuthi stands for ‘scattering by multiple particles in thin-film systems’.
It is a Python software that allows to solve light scattering problems involving
one ore multiple particles near or inside a system of planar layer interfaces.

[image: ../../_images/drawing.png]
It solves the Maxwell equations (3D wave optics) in frequency domain (one wavelength per simulation).

Simulation method

Smuthi is based on the T-matrix method for the single particle scattering and on the scattering-matrix method
for the propagation through the layered medium.
See [Egel 2018] and other publications listed in the literature section for a description of the method.

For non spherical particles, Smuthi calls the
NFM-DS [https://scattport.org/index.php/programs-menu/t-matrix-codes-menu/239-nfm-ds]
by Doicu, Wriedt and Eremin to compute the single particle T-matrix. This is a Fortran software package written by
based on the “Null-field method with discrete sources”, see [Doicu et al. 2006].

Performance critical parts of the software are implemented in CUDA. When dealing with a large number of particles, Smuthi can benefit from a substantial acceleration if a suitable (NVIDIA) GPU is available.

For CPU-only execution, other acceleration concepts (including MPI parallelization, Numba JIT compilation) are currently tested.

Range of applications

Smuthi can be applied to any scattering problem in frequency domain involving

	a system of plane parallel layer interfaces separating an arbitrary number of thin metallic or dielectric layers.

	an arbitrary number of wavelength-scale scattering particles (currently available: spheres, spheroids, finite cylinders, custom particle shapes, anisotropic spheres, layered spheroids). The particles can be metallic or dielectric and rotated to an arbitrary orientation.

	an initial field in form of a plane wave, a beam (currently available: beam with Gaussian xy-profile) or a collection of dipole sources

Thus, the range of applications spans from scattering by a single particle on a substrate to scattering by several thousand particles inside a planarly layered medium. For a number of examplary simulations, see the examples section.

Simulation output

Smuthi can compute

	the 3D electric and/or magnetic field, for example along a cut plane and save it in the form of ascii data files, png images or gif animations.

	the far field power flux of the total field, the initial field or the scattered field.
For plane wave excitation, it can be processed to the form of
differential scattering and extinction cross sections.

	For dipole sources, the dissipated power can be computed (Purcell effect).

Current limitations

The following issues need to be considered when applying Smuthi:

	Particles must not intersect with each other or with layer interfaces.

	Magnetic or anisotropic materials are currently not supported (anisotropic spheres are currently tested).

	The method is in principle valid for a wide range of particle sizes -
however, the numerical validity has only been tested for particle diameters up to around one wavelength.
For larger particles, note that the number of multipole terms in the spherical wave expansion
grows with the particle size. For further details, see the
hints for the selection of the multipole truncation order.

	Particles in a single homogeneous medium (or in free space) can be treated
by setting a trivial two layer system with the same refractive index.
However, Smuthi was not designed for that use case and we believe that
there is better software for that case.

	Smuthi was designed for particles on a substrate or particles near or inside a thin-film system
with layer thicknesses of up to a few wavelengths.
Simulations involving thick layers might fail or return wrong results due to numerical instability.
Maybe a more stable algorithm for the layer system response does exist - help is welcome.

	Smuthi does not provide error checking of user input, nor does it check if
numerical parameters specified by the user are sufficient for accurate
simulation results. It is thus required that the user develops some
understanding of the influence of various numerical parameters on the
validity of the results.
See the simulation guidelines.

	A consequence of using the T-matrix method is that the electric field inside the circumscribing
sphere of a particle cannot be correctly computed, see for example Auguié et al. (2016) [https://doi.org/10.1088/2040-8978/18/7/075007].
In the electric field plots, the circumscribing sphere is displayed as a dashed circle around the particle
as a reminder that there, the computed near fields cannot be trusted.

	Particles with initersecting circumscribing spheres can lead to incorrect results.
The use of Smuthi is therefore limited to geometries with particles that have disjoint circumscribing spheres.

	If particles are located near interfaces, such that the circumscribing shere of the particle intersects the
interface, a correct simulation result can in principle be achieved. However, special care has to be taken
regarding the selection of the truncation of the spherical and plane wave expansion, see
the hints for the selection of the wavenumber truncation.

	Dipole sources must not be placed inside the circumscribing sphere of a non-spherical particle (exception: it is OK if the particle is in a different layer)

License

The software is licensed under the MIT license [https://en.wikipedia.org/wiki/MIT_License].

How to cite this software

If you use SMUTHI for a publication, please consider to cite [Egel et al. 2021].

Contact

Email to the author under [image: emailpic] or to the Smuthi mailing list under smuthi@googlegroups.com for questions, feature requests or if you would like to contribute.

Acknowledgments

The following persons are/were involved in the Smuthi development: Amos Egel, Dominik Theobald, Krzysztof Czajkowski, Konstantin Ladutenko, Lorenzo Pattelli, Alexey Kuznetsov, Parker Wray.

The authors wish to thank Adrian Doicu, Thomas Wriedt and Yuri Eremin for the
NFM-DS [https://scattport.org/index.php/programs-menu/t-matrix-codes-menu/239-nfm-ds] package, a copy of which
is distributed with Smuthi.

Ilia Rasskazov, Giacomo Mazzamuto, Fabio Mangini, Refet Ali Yalcin and Johanne Heitmann Solheim have helped with useful comments, bug reports and code additions.

We thank Håkan T Johansson for making his pywigjxpf software availible through PyPi and also under Windows.

The creation of Smuthi was supervised by Uli Lemmer and Guillaume Gomard during the research project
LAMBDA [http://gepris.dfg.de/gepris/projekt/278746617], funded by the DFG [http://www.dfg.de/]
in the priority programme tailored disorder [http://gepris.dfg.de/gepris/projekt/255652081].

Getting started

	Installation
	Installing Smuthi under Ubuntu (recommended)

	Installing Smuthi under Windows

	Installing Smuthi from source

	GPU-acceleration (optional)

	Troubleshooting

	Running a simulation
	Create a simulation script

	Running the simulation script

Installation

We recommend to use Linux operating systems to run Smuthi. Otherwise, Smuthi can run on Windows, too, but issues regarding dependencies or performance are more likely.

Installing Smuthi under Ubuntu (recommended)

Prerequisites

python3 with pip, gfortran and gcc usually are shipped with the operating system. However, Smuthi requires a Python version of 3.6 or newer. Check the installed Python version by:

python3 --version

If the version is 3.5 or less, please install a newer Python version. You can have multiple Python versions installed in parallel. Depending on your configuration, you might need to replace the command python3 in the below by the command that belongs to the newly installed Python, e.g. python3.8.

Make sure that the Foreign Function Interface library is available (needed for pywigxjpf):

sudo apt-get install libffi6 libffi-dev

Installation

To install Smuthi from PyPi, simply type:

sudo python3 -m pip install smuthi

Alternatively, you can install it locally from source (see below section Installing Smuthi from source).

Installing Smuthi under Windows

Prerequisites

First make sure that a 64 Bit Python 3.6 or newer is installed on your computer.
You can install for example
Anaconda [https://www.continuum.io/downloads]
or WinPython [https://winpython.github.io/]
to get a full Python environment.

Warning

Anaconda users are required to update numpy to the latest version from conda-forge [https://conda-forge.org/] before intalling Smuthi. It is also recommended to create a dedicated conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html] for the Smuthi installation. In case the environment gets messed up by destructive interference between Pip and conda, the main Anaconda installation is then still unaffected.

Installation

Open a command window and type:

python -m pip install smuthi

Depending on where pip will install the package, you might need administrator rights for that.

Alternatively, install locally from source (see below section Installing Smuthi from source).

Installing Smuthi from source

This option allows to install a non-release version of Smuthi or to modify the source code and then run your custom version of Smuthi.

Ubuntu

Clone Smuthi and install it locally by:

git clone https://gitlab.com/AmosEgel/smuthi.git
cd smuthi/
sudo python3 -m pip install -e .

Windows

Local installation requires a Fortran compiler. Visit the MinGW getting started page [http://mingw.org/wiki/Getting_Started] and follow the instructions to install gfortran. Make sure to add the bin folder of your MinGW installation to the Windows PATH variable. See Environment Settings section of the MinGW getting started page [http://mingw.org/wiki/Getting_Started] for instructions.

Note

The MinGW version needs to fit to your Python installation. If you have 64 Bit Python, make sure to download a Mingw-64 [https://sourceforge.net/projects/mingw-w64/]

Then, download [https://gitlab.com/AmosEgel/smuthi/tags] or git clone the Smuthi project folder from the gitlab repository [https://gitlab.com/AmosEgel/smuthi.git]. Open a command prompt and change directory to the Smuthi
project folder and enter:

python -m pip install -e .

If that command fails (e.g. because pip tries to compile the extension modules with the MSVC compiler instead of mingw), you can try:

python -m pip install wheel
python -m pip install numpy
python setup.py develop

Depending on the Python version, the above commands may fail to create statically linked extensions. This will lead to runtime errors saying that some DLL cannot be found. In that case you can try to overwrite the extension modules statically linked PYD-files by running the command:

python setup.py build_ext --inplace --compiler=mingw32 --fcompiler=gnu95 -f

Installing Smuthi from source on Windows can be troublesome. If you experience difficulties, please seek support from the Smuthi mailing list [https://groups.google.com/g/smuthi] or open an issue on the Smuthi GitLab repository [https://gitlab.com/AmosEgel/smuthi/-/issues].

Verification

After installation from source you can check the unit tests:

Ubuntu:

sudo python3 -m pip install nose2
nose2

Windows:

python -m pip install nose2
nose2

GPU-acceleration (optional)

Note

PyCuda support is recommended if you run heavy simulations with many particles. In addition, it can speed up certain post processing steps like the evaluation of the electric field on a grid of points, e.g. when you create images of the field distribution.
For simple simiulations involving one particle on a substrate, you might well go without.

If you want to benefit from fast simulations on the GPU, you need:

	A CUDA-capable NVIDIA GPU

	The NVIDIA CUDA toolkit [https://developer.nvidia.com/cuda-toolkit] installed

	PyCuda installed

Under Ubuntu, install PyCuda simply by:

sudo python3 -m pip install pycuda

Under Windows, installing PyCuda this is not as straightforward as under Linux.
There exist prebuilt binaries on Christoph Gohlke’s homepage [https://www.lfd.uci.edu/~gohlke/pythonlibs/#pycuda].
See for example these instructions [https://www.ibm.com/developerworks/community/blogs/jfp/entry/Installing_PyCUDA_On_Anaconda_For_Windows?lang=en]
for the necessary steps to get it running.

Troubleshooting

Windows: Unable to import the nfmds module

Try to install Smuthi from source.

Running a simulation

Create a simulation script

To start a Smuthi simulation, you need to write a simulation script and save it with the file ending .py, for example my_simulation.py.

In the examples section you can find a number of example
scripts that illustrate the use of Smuthi. Edit and run these scripts to get a
quick start.

The Simulation guidelines provide the necessary understanding how a simulation script is built.

For furhter details, the API section contains a description
of all of Smuthi’s modules, classes and functions.

Running the simulation script

To execute the simulation, run the script by

Ubuntu:

python3 my_simulation.py

Windows:

python my_simulation.py

Simulation guidelines

In this section, you can find general hints how to properly run a simulation with Smuthi.

	Building blocks of a Smuthi simulation
	Initial field

	Layer system

	Particles

	The simulation class

	Post processing

	Physical units
	Length units

	Field strength units

	Power units

	Cross sections
	Scattering cross section

	Extinction cross section

	Multipole cut-off

	Complex integral contours
	Default settings

	Automatic contour definition

	Manual contour definition

	Guidelines for parameter selection

	Automatic parameter selection
	Parameter selection procedure

	Simulations involving many particles

	Solver settings

	Custom particles
	Creating a FEM file

	Creating a FEM file using GMSH

	Include custom particle in a Smuthi simulation

	Plane wave coupling
	Use PVWF coupling in a Smuthi simulation

Building blocks of a Smuthi simulation

In general, a Smuthi simulation script contains the following building blocks:

	Definition of the optical system: the initial field, the layer system and a list of scattering particles are defined

	Definition of the simulation object: the simulation object is initialized with the ingredients of the optical system. Further numerical settings can be applied.

	Simulation start: The calculation is launched with the command simulation.run()

	Post processing: The results are processed into the desired output (in our example: scattering cross section).

The following chart illustrates the interaction between the various Smuthi modules:

[image: ../../_images/smuthi_overview.png]

Initial field

Currently, the following classes can be used to define the initial field:

	Plane waves are specified by the vacuum wavelength, incident direction, polarization, complex amplitude and reference point. For details, see the API documentation: smuthi.initial_field.PlaneWave.

	Gaussian beams are specified by the vacuum wavelength, incident direction, polarization, complex amplitude, beam waist and reference point. Note that for oblique incident directions, the Gaussian beam is in fact an elliptical beam, such that the electric field in the xy-plane, i.e., parallel to the layer interfaces has a circular Gaussian footprint. For details, see the API documentation: smuthi.initial_field.GaussianBeam.

	A single point dipole source is specified by the vacuum wavelength, dipole moment vector and position. For details, see the API documentation: smuthi.initial_field.DipoleSource.

	Multiple point dipole sources can be defined using the smuthi.initial_field.DipoleCollection class. A dipole collection is specified by the vacuum wavelength and a list of dipole sources, which can be filled with the smuthi.initial_field.DipoleCollection.append() method.

Layer system

The layer system is specified by a list of layer thicknesses and a list of complex refractive indices.
Here is the link to the corresponding class in the API documentation: smuthi.layers.LayerSystem.

[image: ../../_images/layers.png]
Please note that

	the layer system is built from bottom to top, i.e., the first elements in the lists refer to the bottom layer.

	bottom and top layer are semi-infinite in size. You can specify a layer thickness of zero.

	the interface between the bottom layer and the next layer in the layer system defines the \(z=0\) plane.

	the minimal layer system consists of two layers (e.g., a substrate and an ambient medium). Homogeneous media without layer interfaces cannot be defined, but they can be mimicked by a trivial system of two identical layers. However, we don’t recommend to use Smuthi for such systems, because there are better software products to simulate systems in homogeneous media.

Particles

When defining a scattering particle, you need to provide the parameters regarding geometry and material, as well as the parameters \(l_\mathrm{max}\) and \(m_\mathrm{max}\) which define the multipole expansion cutoff (see section Multipole cut-off).

[image: ../../_images/particles.png]
The following classes can currently be used:

	Spheres are specified by their center position vector, complex refractive index, radius and multipole cutoff. For details, see the API documentation: smuthi.particles.Sphere.

	Spheroids are specified by their center position vector, euler angles, complex refractive index, two half axis parameters, and multipole cutoff. See: smuthi.particles.Spheroid.

	Cylinders are specified by their center position vector, euler angles, complex refractive index, radius, height and multipole cutoff. See: smuthi.particles.FiniteCylinder.

	Custom particles allow to model particles with arbitrary geometry. They are specified by their position vector, euler angles, a FEM file containing the particle surface mesh, a scale parameter to set the physical size of the particle (if it deviates from the size specified by the mesh file) and multipole cutoff. See: smuthi.particles.CustomParticle.

Some notes:

	The simulation of nonspherical particles depends on the NFM-DS Fortran code by Adrian Doicu, Thomas Wriedt and Yuri Eremin, see [Doicu et al. 2006].

	Particles must not overlap with each other or with layer interfaces.

	The circumscribing spheres of non-spherical particles may overlap with layer interfaces (e.g. a flat particle on a substrate), but care has to be taken with regard to the selection of the numerical parameters. See [Egel et al. 2016b] and [Egel et al. 2017] for a discussion. Use of Smuthi’s automatic parameter selection feature is recommended.

	The circumscribing spheres of non-spherical particles must not overlap with each other. There is a Smuthi package to allow for plane-wave mediated particle coupling developed by Dominik Theobald which allows to treat particles with overlaping circumscribing spheres, but this package is still in beta and requires expert knowledge to be used.

The simulation class

The simulation object is the central manager of a Smuthi simulation. To define a simulation, you need to at least specify the optical system, i.e., an initial field, a layer system and a list of scattering particles.

In addition, you can provide a number of input parameters regarding numerical parameters or solver settings which you can view in the API documentation: smuthi.simulation.Simulation.

For your first simulations, you can probably just go with the default parameters. However, when approaching numerically challanging systems or if you are interested to optimize the runtime, we recommend to read the sections xyz to get an overview and to study the corresponding tutorial scripts.

Todo

Add links to sections and examples

Post processing

Once the smuthi.simulation.Simulation.run() method has successfully terminated, we still need to process the results into the desired simulation output. Smuthi offers data structures to obtain near and far field distributions as well as scattering cross sections. Below, we give a short overview on a couple of convenience functions that can be used to quickly generate some output.

	Near fields are electric field distributions as a function of position, \(\mathbf{E} = \mathbf{E}(\mathbf{r})\). The term near field is opposed to far field which is an intensity distribution in direction space. Near field does not imply that the field is evaluated very close to the particles. If you want to generate plots or animations of the electric field distribution, we recommend to use the smuthi.postprocessing.graphical_output.show_near_field() function. This is a very flexible and powerful function that allows a couple of settings which you can study in the API documentation.

Note

Spheres allow the evaluation of near fields everywhere (inside and outside the particles). Non-spherical particles allow the evaluation only outside the particles. Please also note that the computed near fields inside the circumscribing sphere of non-spherical particles are in general not correct.

	Far fields are intensity distributions in direction space (i.e., power per solid angle, measured far away from the scattering centers). We recommend to have a look at the functions smuthi.postprocessing.graphical_output.show_scattered_far_field(), smuthi.postprocessing.graphical_output.show_total_far_field() and smuthi.postprocessing.graphical_output.show_scattering_cross_section() and to study their input parameters in the API documentation.

\[W = \int_0^{2\pi} \int_0^\pi I(\alpha, \beta) \sin\beta \mathrm{d}\beta \mathrm{d}\alpha\]

	Cross sections: If the initial field was a plane wave, the total scattering cross section as well as the extinction cross section can be evaluated. Please view the section Cross sections for details.

If you need post processing that goes beyond the described functionality, we recommend to browse through the API documentation of the smuthi.postprocessing package or directly through the source code and construct your own post processing machinery from the provided data structure.

Physical units

Smuthi is commited to a “relative units” philosophy.
That means, all quantities have only relative meaning.

Length units

The user is free to select the unit in which all lengths are provided.
Just make sure that particle sizes, layer thicknesses and wavelengths are all specified in the same unit.
Results will automatically refer to the same unit.
For example, if you specify the wavelength in nanometers, resulting cross sections will be in square nanometers.
Besides, quantities with an inverse length dimension (wavenumbers) also implicitly refer to the selected length unit.

Field strength units

When the electromagnetic fields are computed, their absolute value has no physical meaning.
Only relative quantities can be used for further analysis.
For example, the scattered field strength divided by the amplitude of the initial field does have a physical meaning.

Power units

Also power units have no meaning as absolute values.
To get meaningful information, power-related figures always need to be guarded in reference to other power-related figures.
Some examples:

	Scattering cross section as the quotient of scattered (angular) intensity and incident (power-per-area) intensity.

	Diffuse reflectivity as the total back scattered far field power divided by the initial Gaussian beam power.

	Purcell factor as the dissipated power of a dipole source divided by the dissipated power of the same source in the absence of planar interfaces and scattering particles.

Cross sections

If the initial excitation is given by a plane wave, it is natural to discuss the far field
properties of a scattering structure in terms of cross sections.

However, in the context of scattering particles near planar interfaces, the commonly used concepts of cross sections need further clarification.
In the following, we therefore discuss the meaning of cross sections as they are implemented in Smuthi.

Scattering cross section

The concept of a scattering cross section is straightforward:
The incoming wave is specified by an intensity (power per area), whereas
the scattered field is characterized by a power, such that the scattered signal divided
by the initial signal yields an area.

The total scattering cross section reads

\[C_\mathrm{scat} = \frac{W_\mathrm{scat}}{I_\mathrm{inc}}\]

where \(W_\mathrm{scat}\) is the total scattered power and \(I_\mathrm{inc}\) is the incident irradiance (power per unit area perpendicular to the direction of propagation).

[image: ../../_images/projected_area.png]

Note

In Smuthi versions < 1.0, a different definition of cross sections was used. In these versions, the incident irradiance was defined as “power per unit area parallel to the layer system”, such that cross section figures computed with previous versions can deviate from the current version by a factor \(\cos(\beta_\mathrm{inc})\), where \(\beta_\mathrm{inc}\) is the propagation angle of the incoming plane wave.

Extinction cross section

The term “extinction” means that particles take away power from the incindent plane wave, such that they partially extinguish the incindent wave.
The power that they take away from the incoming wave is either absorbed or scattered into other channels, such that in the context of
scattering of a plane wave by particles in a homogeneous medium, the extinction cross section is usually defined as the
sum of the total scattering cross section and the absorption cross section.

However, this interpretation of extinction (i.e., the sum of particle absorption and scattering) is not applicable when besides the particle there
is also a planarly layered medium involved. The reason is that besides particle absorption and scattering, also absorption in the layered medium has to be taken into account.

[image: ../../_images/extinction.PNG]
Instead, we apply what is usually referred to as the optical theorem [https://en.wikipedia.org/wiki/Optical_theorem] to define extinction (please see section 3.8.1 of [Egel 2018] for the mathematical details).
This way, we take the term “extinction” serious and provide a measure for “how much power is taken away by the particles from the incident plane wave?”

In fact, Smuthi computes two extinction cross sections: one for the reflected incoming wave and one for the transmitted incoming wave.
That means, the extinction cross section for reflection (transmission) refers to the destructive interference of the scattered signal with the
specular reflection (transmission) of the initial wave. It thereby includes absorption in the particles, scattering, and a modified absorption by the layer system, e.g. through incoupling into waveguide modes.

As a consequence, the extinction cross sections can be negative if (for example due to a modified absorption in the layer system) more light is reflected (or transmitted) in the specular direction than would be without the particles.

Conservation of energy is then expressed by the following statement: “For lossless particles near or inside a lossless planarly layered medium (that doesn’t support any waveguide modes), the sum of top and bottom extinction cross section equals the total scattering cross section”.

Multipole cut-off

The scattering properties of each particle are represented by its T-matrix \(T_{plm,p'l'm'}\)
where \(plm\) and \(p'l'm'\) are the multipole polarization, degree and order of the scattered
and incoming field, respectively, see sections 3.3 and 2.3.2 of [Egel 2018].
In practice, the T-matrix is truncated at some multipole degree \(l_{max} \ge 1\) and order
\(0 \le m_{max} \le l_{max}\) to obtain a finite system of linear equations.

Specify the cut-off parameters for each particle like this:

large_sphere = smuthi.particles.Sphere(...
 l_max=10,
 m_max=10,
 ...)

small_sphere = smuthi.particles.Sphere(...
 l_max=3,
 m_max=3,
 ...)

In general, we can say:

	Large particles require higher multipole orders than small particles.

	Particles very close to each other, very close to an interface or very close to a point dipole
source require higher multipole orders than those that stand freely.

	Larger multipole cutoff parameters imply better accuracy, but also a quickly growing numerical effort.

	When simulating flat particles near planar interfaces, the multipole truncation should be chosen with regard to the Sommerfeld integral truncation. See [Egel et al. 2017].

Literature offers various rules of thumb for the selection of the multipole truncation in the
case of spherical particles, see for example [Neves 2012]
or [Wiscombe 1980].

Otherwise, you can use Smuthi’s built-in automatic parameter selection feature
to estimate a suitable multipole truncation, see section on Automatic parameter selection.

Complex integral contours

Sommerfeld integrals arise in the treatment of the layer system response to the scattered field or to the initial field (in case of dipole excitation).
Their numerical evaluation relies on an integral contour that is deflected into the complex plane in order to avoid
sharp features stemming from waveguide mode singularities (see the section on Sommerfeld integrals for a short discussion).

[image: ../../_images/contour.png]

Default settings

If you specify no input arguments with regard to the integral contours, default settings are applied.
Note, however, that this does not guarantee accurate results in all use cases.

Automatic contour definition

If you want to be on the safe side, use the automatic parameter selection feature to obtain a suitable integral contour, see section on Automatic parameter selection.
The drawback is a substantially enhanced runtime, as the simulation is repeated multiple times until the result converges.

Manual contour definition

We recommend to use the neff_imag, neff_max and neff_resolution input parameter of the smuthi.simulation.Simulation constructor.
Smuthi will construct contours based on this input and store them for the duration of the simulation as default contours for multiple scattering and
initial fields in the smuthi.fields module.

	neff_imag states how far into the negative imaginary the contour will be deflected in terms of the dimensionless effective refractive index, \(n_\mathrm{eff}=\frac{c\kappa}{\omega}\)

	neff_max is the point where the contour ends (on the real axis). Instead of neff_max, you can also provide neff_max_offset which specifies, how far neff_max should be chosen away from the largest relevant layer refractive index.

	neff_resolution denotes the distance \(\Delta n_\mathrm{eff}\) between two adjacent sampling points (again in terms of effective refractive index).

The locations where the waypoints mark a deflection into the imaginary are chosen with consideration of the involved layer system refractive indices
(see the section on Sommerfeld integrals for a discussion why that is necessary).

This is how a call to the simulation contructor could look like:

simulation = smuthi.simulation.Simulation(...
 neff_imag=1e-2,
 neff_max=2.5,
 neff_resolution=5e-3,
 ...)

Note

If you need more control over the shape of the contour, read through the API documentation or contact the support mailing list (see Contact).

Multiple scattering and initial field contours

In some use cases it makes sense to specify the contour for multiple scattering with different parameters than
the contour for the initial field. For example, when a dipole is very close to an interface, but the particle centers are not.

In that case you can use the function reasonable_Sommerfeld_kpar_contour (see fields)
to construct an array of k_parallel values for each initial field and multiple scattering purposes, like this:

construct contour arrays
init_kpar = smuthi.fields.reasonable_Sommerfeld_kpar_contour(...)
scat_kpar = smuthi.fields.reasonable_Sommerfeld_kpar_contour(...)

assign them to the respective objects
simulation = smuthi.initial_field.DipoleSource(...
 k_parallel=scat_kpar,
 ...)

simulation = smuthi.simulation.Simulation(...
 k_parallel=scat_kpar,
 ...)

Guidelines for parameter selection

Contour truncation

The contour truncation scale neff_max is a real number which specifies where the contour ends.
It should be larger than the refractive index of the layer in which the particle resides. The offset \(n_\mathrm{eff}-n\)
should be chosen with regard to the distance between the particles (and point sources) to the next layer interface.
If that distance is large, the truncation scale is uncritical, whereas whereas point sources or particles whose
center is very close to a layer interface require a larger offset.

At a \(z\)-distance of \(\Delta z\), evanescent waves with an effective refractive index of
\(n_\mathrm{eff}\) are damped by a factor of

\[\exp\left(2\pi\mathrm{i}\frac{\Delta z}{\lambda} \sqrt{n_\mathrm{eff}^2-n^2}\right),\]

where \(\lambda\) is the vacuum wavelength and \(n\) is the refractive index of the medium.

[image: ../../_images/delta_z.png]
To select a reasonable neff_max, we should consider that the shortest possible interaction path is twice the \(z\)-distance between some particle center (or dipole position) and the next layer interface.

Uncritical example

A layer system consists of a substrate (\(n=1.5\)), covered with a 1000nm thick layer of titania (\(n=2.1\)) under air (\(n=1\)).
A silica sphere is immersed in the middle of the titania layer. The system is illuminated with a plane wave at vacuum wavelength of 550nm.

Then, \(\Delta z= 2\times 500\mathrm{nm}\) such that evanescent waves with \(n_\mathrm{eff}=2.3\) are already damped by a factor of
\(\exp(-2\pi \frac{1000\mathrm{nm}}{550\mathrm{nm}} \sqrt{(2.3^2-2.1^2)}) \approx 2\times 10^{-5}\) when they propagate to the layer interface and back to the sphere.
Waves beyond that effective refractive index thus can be safely neglected in the particle-layer system interaction, such that a truncation parameter of \(n_\mathrm{eff, max}=2.3\) is reasonable.

Critical example

A layer system consists of a substrate (\(n=1.5\)), under air (\(n=1\)).
A point dipole source of wavelength 550nm is located 10nm above the substrate/air interface.

Here we need to consider \(\Delta z= 2\times 10\mathrm{nm}\) such that Then, evanescent waves with
\(n_\mathrm{eff}=2.3\) are only damped by a factor of
\(\exp(-2\pi \frac{20nm}{550nm} \sqrt{(2.3^2-1^2)}) \approx 0.62\) when scattered by the layer interface.
Even a truncation of \(n_\mathrm{eff, max}=10\) would only lead to an evanescent damping of
\(\exp(-2\pi \frac{20nm}{550nm} \sqrt{(10^2-1^2)}) \approx 0.1\) which might still not be enough.

Resolution

In Smuthi, Sommerfeld integrals are addressed numerical by means of the trapezoidal rule. The discretization of the integrand along the integration contour is determined by the parameter neff_resolution which specifies the distance of one integration node to the next in terms of the effective refractive index. In general, a finer resolution leads to a better accuracy and a longer runtime during preprocessing (i.e., when the particle coupling lookup is computed) as well as during post processing (when the electric field is computed from a plane wave pattern).

The following situations can require a fine sampling of the integrands:

	when a high accuracy is desired

	when waveguide modes and branch point singularities render a numerically challenging integrand of the Sommerfeld integrals (this can be avoided by a deflection into the imaginary, see below)

	when particles with a large distance to each other are part of the simulation geometry

To understand the latter point, consider the Sommerfeld integral as a Hankel transform [https://en.wikipedia.org/wiki/Hankel_transform]. Like in a Fourier transform, a large lateral distance requires a fine sampling of the wavenumber to avoid aliasing [https://en.wikipedia.org/wiki/Aliasing].
It thus is advised to select neff_resol below \(2 / (k\rho_\mathrm{max})\), where \(k=2\pi/\lambda\) is the vacuum wavenumber and \(\rho_\mathrm{max}\) is the largest lateral distance between two particles.

Deflection into imaginary

Near waveguide mode or branchpoint singularities, the integrand of the Sommerfeld integrals may be a rapidly varying function (in case of lossless media, the waveguide mode singularities are located on the real axis, such that the integrand is even singular). In that case, a deflection of the integral contour into the complex plane can improve the accuracy of the numerical integrals for a given sampling resolution, see also the section on Sommerfeld integrals. The extent of that deflection is set by the neff_imag parameter.

Note

Care has to be taken when selecting the neff_imag parameter, especially in the case of large lateral distances between the particles.

	The larger neff_imag, the stronger is the smoothing effect on the Sommerfeld integrand

	For large lateral distances, a too large neff_imag can lead to significant errors! To understand this point, consider the Sommerfeld integral as a Hankel transform, involving expressions of type \(J_\nu(\kappa \rho)\), where \(J_\nu\) is the Bessel function, \(\kappa\) is the in-plane wavenumber (which is proportional to \(n_{\mathrm{eff}}\)) and \(\rho\) is the lateral distance between the particles. Note that the Bessel functions grow rapidly arguments with a large negative imaginary part - which can lead to numerical problems in the integration.

Again, it is thus advised to select neff_imag below \(2 / (k\rho_\mathrm{max})\), where \(k=2\pi/\lambda\) is the vacuum wavenumber and \(\rho_\mathrm{max}\) is the largest lateral distance between two particles.

Automatic parameter selection

Smuthi offers a module to run an automated convergence test for the following parameters:

	Multipole truncation parameters l_max and m_max for each particle

	Sommerfeld integral contour parameters neff_max and neff_resolution.

	Angular resolution of far field data

Parameter selection procedure

The user provides:

	a simulation object

	a detector function

	a realtive tolerance

	some other numerical settings

The detector function

The detector function is a function defined by the user. It accepts a simulation object (one that has already been run) and returns a single quantity which we call the detector quantity. In other words, the detector function does some post processing to yield a value that we use to monitor convergence. If no function but one of the strings “extinction cross section” , “total scattering cross section” or “integrated scattered far field” is specified, the corresponding figure is used as the detector quantity. Other possible detector functions could map to the electric field at a certain point, or the scattered far field in a certain direction or whatever seems to the user to be a suitable measure for convergence of the simulation.

Parameter selection algorithm

The automatic parameter selection routine repeatedly runs the simulation and evaluates the detector quantity with subsequently modified numerical input parameters until the relative deviation of the detector quantity is less than the specified tolerance.

The below animation illustrates the typical graphical output during a parameter selection routine. The left panel shows the extinction cross section as a function of multipole cutoff l_max, where each line corresponds to a different Sommerfeld integral cutoff neff_max. The right panel shows the resulting converged extinction cross sections, this time as a function of Sommerfeld integral cutoff.

[image: ../../_images/Fig1_anim.webp]
For flat particles near planar interfaces, the multipole truncation and the Sommerfeld integral truncation cannot be chosen independently, because we are dealing with a relative convergence, see [Egel et al. 2016b]. In that case, the user can set the relative_convergence flag to true (default). In that case, a convergence test for the multipole truncation parameters is triggered during each iteration of the neff_max selection routine:

	
[image: ../../_images/flowchart_lmax.png]

Selection of l_max

	
[image: ../../_images/flowchart_mmax.png]

Selection of m_max

	
[image: ../../_images/flowchart_neffmax_relconv.png]

Selection of neff_max

	
[image: ../../_images/flowchart_neffresol.png]

Selection of neff_resolution

Some things to regard when using the automatic parameter selection:

	Both, the multiple scattering and the initial field contour are updated with the same parameters. A seperate optimization of the parameters for initial field and multiple scattering is currently not supported.

	The algorithm compares the detector value for subsequent simulation runs. The idea is that if the simulation results agree for different numerical input parameters, they have probably converged with regard to that parameter. However, in certain cases this assumption can be false, i.e., the simulation results agree although they have not converged. The automatic parameter selection therefore does not replace critical judging of the results by the user.

	With the parameter tolerance_steps, the user can ask that the tolerance criterion is met multiple times in a row before the routine terminates.

	The simulation is repeated multiple times, such that the automatic parameter selection takes much more time than a single simulation.

For more details, see the API documentation on the smuthi.utility.automatic_parameter_selection module.

See also the example on Automatic parameter selection.

Simulations involving many particles

A simulation with many particles can be busy for a considerable runtime. The above described automatic procedure might then be unpractical.
In this case, we recommend a strategy of “trial ballooning”. The idea is to find a system that takes less time to simulate but that has similar
requirements with regard to numerical parameters.

[image: ../../_images/flowchart_many_particles.png]
Let us assume that we want to simulate light scattering by one thousand identical flat nano-cylinders located on a thin film system on a substrate.
Then, the selection of neff_max needs to be done with regard to the distance of the particles to the next planar interface, whereas l_max and
m_max have to be chosen with regard to the particle geometry, material, and to the selected neff_max.
Finally, neff_resolution needs to be chosen with regard to the layer system response.
All of these characteristics have nothing to do with the fact that we are interested in a many particles system.
We can thus simulate scattering by a single cylinder on the thin film system and let the automatic parameter selection module determine suitable values
for l_max, m_max, neff_max and neff_resolution. These parameters are then used as input parameters for the 1000-particles simulation
which we run without another call to the automatic parameter selection module.

See the example on Automatic parameter selection for an illustration of the procedure.

Note

One needs to be cautious when the many particles simulation involves large lateral distances. In that case, a finer resolution of the complex contour might be required compared to the single-particle test balloon. See the section on Resolution for details.

Solver settings

Note

This section is relevant if you want to simulate systems with many particles

In order to limit the runtime, Smuthi currently offers two numerical strategies for
the solution of the scattering problem:

	LU factorization [https://en.wikipedia.org/wiki/LU_decomposition], that is basically a variant of Gaussian elimination.
To this end, the interaction matrix is fully stored in memory.

	Iterative solution with the GMRES method [https://en.wikipedia.org/wiki/Generalized_minimal_residual_method].
In this case, you can either store the full interaction matrix in memory, or use a lookup from which
the matrix entries are approximated by interpolation, see
Amos Egel’s PhD thesis [https://publikationen.bibliothek.kit.edu/1000093961/26467128] (section 3.10.1) or
[Egel, Kettlitz, Lemmer, 2016] [https://doi.org/10.1364/JOSAA.33.000698]

With growing particle number, all involved operations get more expensive, but the costs of LU factorization grow
faster than the cost of iterative solution. Similarly, costs of calculating of the full interaction matrix grows
faster than the cost of computing a lookup table. For this reason, we recommend the following decision scheme:

[image: ../../_images/decision.png]
The numerical strategy for solving the linear system is defined through the input parameters of the
simulation constructor. The relevant parameters are:

	solver_type: Either “LU” or “gmres”

	solver_tolerance: This parameter defines the abort criterion.
If the residual is smaller than the tolerance, the solver halts.
The parameter is ignored in case of “LU” solver type.

	store_coupling_matrix: If true, the coupling matrix is explicitly calculated and stored in memory.
Otherwise, a lookup table is prepared and the matrix-vector multiplications are run on the fly, where the
matrix entries are computed using the lookup table. The parameter is ignored in case of “LU” solver type.

	coupling_matrix_lookup_resolution: If lookup tables should be used, this needs to be set to a distance value
that defines the spatial resolution of the lookup table. The parameter is ignored when the coupling matrix is
explicitly calculated.

	coupling_matrix_interpolator_kind: If lookup tables should be used, define here either “linear” or “cubic”
interpolation. “linear” is faster and “cubic” is more precise for the same resolution. The parameter is ignored when the coupling matrix is
explicitly calculated.

This would be a typical setting for a small number of particles:

simulation = smuthi.simulation.Simulation(...
 solver_type='LU',
 store_coupling_matrix=True,
 ...)

This would be a typical setting for a large number of particles:

simulation = smuthi.simulation.Simulation(...
 solver_type='gmres',
 solver_tolerance=1e-4,
 store_coupling_matrix=False,
 coupling_matrix_lookup_resolution=5,
 coupling_matrix_interpolator_kind='linear',
 ...)

Note that GPU acceleration is currently only available for particle coupling through lookup interpolation.

Custom particles

Since version 1.0.0, Smuthi allows to model scattering particles with a user-defined geometry by wrapping the NFM-DS TNONAXSYM functionality.

Creating a FEM file

The particle surface must be specified in a FEM file.

	The first line is the number of surfaces.

	For each surface, the first line is the number of mesh elements

	Each mesh element is specified by a line containing: element location (x, y, z), element normal (x, y, z), element normal

Creating a FEM file using GMSH

[image: ../../_images/screenshot_gmsh.png]
One way to produce a FEM file is to use the GMSH package [https://gmsh.info/].
For example, to generate a cube, do:

	select “Geometry” → “Elementary entities” → “Add” → “Box”

	enter the parameters to achieve a 1 by 1 by 1 box at the center of the coordinate system

	select “Mesh” → 2D

	optionally: refine mesh by clicking “Mesh” → “Refine by splitting”

	Save the mesh in .stl format by “File” → “Export” and then pick “Mesh - STL Surface”

	In the STL options, select “Per surface”. This is important, because a clear distinction between surfaces is required.

The so created .stl file can be converted to a FEM file using the sumuthi.linearsystem.tmatrix.nfmds.stlmanager module through the convert_stl_to_fem() method.

Include custom particle in a Smuthi simulation

To create a particle object with custom geometry, call the smuthi.particles.CustomParticle class, for example:

cube = smuthi.particles.CustomParticle(position=[0, 0, 100],
 refractive_index=1.52,
 scale=100,
 l_max=3,
 fem_filename="cube.fem")

Plane wave coupling

Warning

The plane-wave coupling module is still in development, and its current functionality is experimental.

If non-spherical particles are located such that their circumscribing spheres overlap, the conventional superposition T-matrix method is not applicable. A coupling method based on a temporary plane wave expansion of the scattered field was developed [Theobald 2017] in order to allow for simulations also in such cases.

Right now, the plane wave coupling can be used if

	direct matrix inversion is selected, see Solver settings.

	m_max is set to l_max for all particles.

Use PVWF coupling in a Smuthi simulation

To activate the PVWF coupling feature in a Smuthi simulation, set the use_pvwf_coupling parameter of the simulation constructor to True and provide a suitable \(n_{eff}\) truncation and discretization with the pvwf_coupling_neff_max parameter and the pvwf_coupling_neff_resolution parameter of the simulation constructor:

simul = smuthi.simulation.Simulation(...,
 use_pvwf_coupling=True,
 pvwf_coupling_neff_max=7,
 pvwf_coupling_neff_resolution=1e-2)

Examples

Tutorials

This section contains a number of exemplary simulation scripts to illustrate the use of Smuthi.
Each tutorial is supposed to illustrate a certain aspect of the software.
Click on the respective tutorial names to view a brief discussion.

	No.

	Tutorial

	level

	script

	Google colab

	1

	Setting up a simulation

	introductory

	download

	link [https://colab.research.google.com/drive/1sHLhTT-yZbXjjv9MUefQL3FYosSpg4ZJ]

	2

	Plotting the near field

	introductory

	download

	link [https://colab.research.google.com/drive/1q6RJQssfNRG3NL3qqkZda1rVtDlp5sIu]

	3

	Plotting the far field

	introductory

	download

	link [https://colab.research.google.com/drive/14V5bMFykXWL9xSZwqyVsiC8zYtQkwJ90]

	4

	Non-spherical particles

	intermediate

	download

	n/a

	5

	Dipole sources

	intermediate

	TBD

	n/a

	6

	Gaussian beams

	intermediate

	TBD

	n/a

	7

	Automatic parameter selection

	advanced

	download

	n/a

	8

	Many particle simulations

	advanced

	download

	n/a

	9

	Multipole decomposition

	intermediate

	download

	n/a

	10

	Periodic near field

	intermediate

	download

	n/a

	11

	Plane wave coupling

	advanced

	download

	n/a

Benchmarks

This section contains a number of benchmarks between Smuthi and other codes
with regard to accuracy and/or runtime.
Click on the respective benchmark names to view a brief discussion.

	No.

	Benchmark

	other method

	script and data

	1

	Four particles in slab waveguide

	FEM

	download

	2

	Fifteen periodic spheres in slab

	FEM

	download

API

Smuthi is a Python package with the following modules and sub-packages.

	Top level modules
	smuthi.simulation

	smuthi.initial_field

	smuthi.layers

	smuthi.particles

	The smuthi.fields package
	fields

	fields.expansions

	fields.expansions_cuda

	fields.transformatinos

	fields.vector_wave_functions

	The smuthi.linearsystem package
	linearsystem

	linearsystem.linear_system

	linearsystem.linear_system_cuda

	The smuthi.linearsystem.tmatrix package
	tmatrix

	tmatrix.t_matrix

	The smuthi.linearsystem.tmatrix.nfmds package
	nfmds.indexconverter

	nfmds.stlmanager

	The smuthi.postprocessing package
	postprocessing

	postprocessing.far_field

	postprocessing.graphical_output

	postprocessing.scattered_field

	postprocessing.power_flux

	The smuthi.utility package
	utility

	utility.automatic_parameter_selection

	utility.cuda

	utility.logging

	utility.math

	utility.memoizing

	utility.optical_constants

Top level modules

smuthi.simulation

Provide class to manage a simulation.

	
class smuthi.simulation.Simulation(layer_system=None, particle_list=None, initial_field=None, k_parallel='default', angular_resolution=0.008726646259971648, neff_waypoints=None, neff_imag=0.01, neff_max=None, neff_max_offset=1, neff_resolution=0.01, neff_minimal_branchpoint_distance=None, overwrite_default_contours=True, solver_type='LU', solver_tolerance=0.0001, store_coupling_matrix=True, coupling_matrix_lookup_resolution=None, coupling_matrix_interpolator_kind='linear', length_unit='length unit', input_file=None, output_dir='smuthi_output', save_after_run=False, log_to_file=False, log_to_terminal=True, check_circumscribing_spheres=True, do_sanity_check=True, periodicity=None, ewald_sum_separation_parameter='default', number_of_threads_periodic='default', use_pvwf_coupling=False, pvwf_coupling_neff_max=None, pvwf_coupling_neff_resolution=0.01)

	Central class to manage a simulation.

	Parameters

	
	layer_system (smuthi.layers.LayerSystem) – stratified medium

	particle_list (list) – list of smuthi.particles.Particle objects

	initial_field (smuthi.initial_field.InitialField) – initial field object

	k_parallel (numpy.ndarray or str) – in-plane wavenumber for Sommerfeld integrals and field
expansions. if ‘default’, use
smuthi.fields.default_Sommerfeld_k_parallel_array

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	neff_waypoints (list or ndarray) – Used to set default k_parallel arrays.
Corner points through which the contour runs
This quantity is dimensionless (effective
refractive index, will be multiplied by vacuum
wavenumber)
Multipole cut-off
If not provided, reasonable waypoints are estimated.

	neff_imag (float) – Used to set default k_parallel arrays.
Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).
Only needed when no neff_waypoints are provided

	neff_max (float) – Used to set default k_parallel arrays.
Truncation value of contour (in terms of effective refractive
index). Only needed when no neff_waypoints are
provided

	neff_max_offset (float) – Used to set default k_parallel arrays.
Use the last estimated singularity location plus this value
(in terms of effective refractive index). Default=1
Only needed when no neff_waypoints are provided
and if no value for neff_max is specified.

	neff_resolution (float) – Used to set default k_parallel arrays.
Resolution of contour, again in terms of effective refractive
index

	neff_minimal_branchpoint_distance (float) – Used to set default k_parallel arrays.
Minimal distance that contour points shall have from
branchpoint singularities (in terms of effective
refractive index). This is only relevant if not deflected
into imaginary. Default: One fifth of neff_resolution

	overwrite_default_contours (bool) – If true (default), the default contours are written even if
they have already been defined before

	solver_type (str) – What solver type to use?
Options: ‘LU’ for LU factorization, ‘gmres’ for GMRES iterative solver

	coupling_matrix_lookup_resolution (float or None) – If type float, compute particle coupling by interpolation of
a lookup table with that spacial resolution. If None
(default), don’t use a lookup table but compute the coupling
directly. This is more suitable for a small particle number.

	coupling_matrix_interpolator_kind (str) – Set to ‘linear’ (default) or ‘cubic’ interpolation of the lookup table.

	store_coupling_matrix (bool) – If True (default), the coupling matrix is stored. Otherwise it is
recomputed on the fly during each iteration of the solver.

	length_unit (str) – what is the physical length unit? has no influence on the computations

	input_file (str) – path and filename of input file (for logging purposes)

	output_dir (str) – path to folder where to export data

	save_after_run (bool) – if true, the simulation object is exported to disc when over

	log_to_file (bool) – if true, the simulation log will be written to a log file

	log_to_terminal (bool) – if true, the simulation progress will be displayed in the terminal

	check_circumscribing_spheres (bool) – if true, check all particles for overlapping circumscribing spheres
and print a warning if detected

	do_sanity_check (bool) – if true (default), check numerical input for some flaws. Warning: A passing
sanity check does not guarantee correct numerical settings. For many
particles, the sanity check might take some time and/or occupy large memory.

	periodicity (tuple) – tuple (a1, a2) specifying two 3-dimensional lattice vectors in Carthesian coordinates
with a1, a2 (numpy.ndarrays)

	ewald_sum_separation_parameter (float) – Used to separate the real and reciprocal lattice sums to evaluate
particle coupling in periodic lattices.

	number_of_threads_periodic (int or str) – sets the number of threats used in a simulation with periodic particle arrangements
if ‘default’, all available CPU cores are used
if negative, all but number_of_threads_periodic are used

	use_pvwf_coupling (bool) – If set to True, plane wave coupling is used to calculate
the direct. Currently only possible in combination with direct solver strategy.

	pvwf_coupling_neff_max (float) – Truncation neff for the integration contour of the PVWF coupling integral

	pvwf_coupling_neff_resolution (float) – Discretization of the neff integral for PVWF coupling

	
circumscribing_spheres_disjoint()

	Check if all circumscribing spheres are disjoint

	
initialize_linear_system()

	

	
largest_lateral_distance()

	Compute the largest lateral distance between any two particles

	
print_simulation_header()

	

	
run()

	

	
sanity_check()

	Check contour parameters for obvious problems

	
save(filename=None)

	Export simulation object to disc.

	Parameters

	filename (str) – path and file name where to store data

	
set_default_Sommerfeld_contour()

	Set the default Sommerfeld k_parallel array

	
set_default_angles()

	Set the default polar and azimuthal angular arrays for pre-processing (i.e., initial field expansion)

	
set_default_contours()

	Set the default initial field k_parallel array and the default Sommerfeld k_parallel array

	
set_default_initial_field_contour()

	Set the default initial field k_parallel array

	
set_logging(log_to_terminal=None, log_to_file=None, log_filename=None)

	Update logging behavior.

	Parameters

	
	log_to_terminal (logical) – If true, print output to console.

	log_to_file (logical) – If true, print output to file

	log_filename (char) – If log_to_file is true, print output to a file with that name in the output
directory. If the file already exists, it will be appended.

smuthi.initial_field

This module defines classes to represent the initial excitation.

	
class smuthi.initial_field.DipoleCollection(vacuum_wavelength, k_parallel_array='default', azimuthal_angles_array='default', angular_resolution=None, compute_swe_by_pwe=False, compute_dissipated_power_by_pwe=False)

	Class for the representation of a set of point dipole sources. Use the append method to add DipoleSource objects.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength (length units)

	k_parallel_array (numpy.ndarray or str) – In-plane wavenumber.
If ‘default’, use smuthi.fields.default_initial_field_k_parallel_array

	azimuthal_angles_array (numpy.ndarray or str) – Azimuthal angles for plane wave expansions
If ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	compute_swe_by_pwe (bool) – If True, the initial field coefficients are computed through a plane wave
expansion of the whole dipole collection field. This is slower for few dipoles
and particles, but can become faster than the default for many dipoles and
particles (default=False).

	compute_dissipated_power_by_pwe (bool) – If True, evaluate dissipated power through a plane wave expansion of the
whole scattered field. This is slower for few dipoles, but can be
faster than the default for many dipoles (default=False).

	
append(dipole)

	Add dipole to collection.

	Parameters

	dipole (DipoleSource) – Dipole object to add.

	
dissipated_power(particle_list, layer_system, k_parallel='default', azimuthal_angles='default', angular_resolution=None)

	Compute the power that the dipole collection feeds into the system.

It is computed according to

\[P = \sum_i P_{0, i} + \frac{\omega}{2} \mathrm{Im} (\mathbf{\mu}_i^* \cdot \mathbf{E}_i(\mathbf{r}_i))\]

where \(P_{0,i}\) is the power that the i-th dipole would feed into an infinte homogeneous medium with the
same refractive index as the layer that contains that dipole, \(\mathbf{r}_i\) is the location of the i-th
dipole, \(\omega\) is the angular frequency, \(\mathbf{\mu}_i\) is the dipole moment and
\(\mathbf{E}_i\) includes the reflections of the dipole field from the layer interfaces, as well as the
scattered field from all particles and the fields from all other dipoles.
In contrast to dissipated_power_alternative, this routine uses the particle coupling routines and might be
faster for many particles and few dipoles.

	Parameters

	
	particle_list (list of smuthi.particles.Particle objects) – scattering particles

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (ndarray or str) – array of in-plane wavenumbers for plane wave expansions. If ‘default’, use
smuthi.fields.default_initial_field_k_parallel_array

	azimuthal_angles (ndarray or str) – array of azimuthal angles for plane wave expansions. If ‘default’, use
smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	Returns

	dissipated power of each dipole (list of floats)

	
dissipated_power_alternative(particle_list, layer_system, k_parallel='default', azimuthal_angles='default', angular_resolution=None)

	Compute the power that the dipole collection feeds into the system.

It is computed according to

\[P = \sum_i P_{0, i} + \frac{\omega}{2} \mathrm{Im} (\mathbf{\mu}_i^* \cdot \mathbf{E}_i(\mathbf{r}_i))\]

where \(P_{0,i}\) is the power that the i-th dipole would feed into an infinte homogeneous medium with the
same refractive index as the layer that contains that dipole, \(\mathbf{r}_i\) is the location of the i-th
dipole, \(\omega\) is the angular frequency, \(\mathbf{\mu}_i\) is the dipole moment and
\(\mathbf{E}_i\) includes the reflections of the dipole field from the layer interfaces, as well as the
scattered field from all particles and the fields from all other dipoles. In contrast to dissipated_power, this
routine uses the scattered field piecewise expansion and might be faster for few particles or many dipoles.

	Parameters

	
	particle_list (list of smuthi.particles.Particle objects) – scattering particles

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (ndarray or str) – array of in-plane wavenumbers for plane wave expansions. If ‘default’, use
smuthi.fields.default_initial_field_k_parallel_array

	azimuthal_angles (ndarray or str) – array of azimuthal angles for plane wave expansions. If ‘default’, use
smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	Returns

	dissipated power of each dipole (list of floats)

	
electric_field(x, y, z, layer_system)

	Evaluate the complex electric field of the dipole collection.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	Returns

	Tuple (E_x, E_y, E_z) of electric field values

	
magnetic_field(x, y, z, layer_system)

	Evaluate the complex magnetic field of the dipole collection.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	Returns

	Tuple (H_x, H_y, H_z) of magnetic field values

	
piecewise_field_expansion(layer_system)

	Compute a piecewise field expansion of the dipole collection..

	Parameters

	layer_system (smuthi.layer.LayerSystem) – stratified medium

	Returns

	smuthi.field_expansion.PiecewiseWaveExpansion object

	
plane_wave_expansion = functools.partial(<bound method Memoize.__call__ of <smuthi.utility.memoizing.Memoize object>>, None)

	

	
spherical_wave_expansion(particle, layer_system)

	Regular spherical wave expansion of the dipole collection including layer system response, at the locations
of the particles. If self.compute_swe_by_pwe is True, use the dipole collection plane wave expansion, otherwise
use the individual dipoles spherical_wave_expansion method.

	Parameters

	
	particle (smuthi.particles.Particle) – particle relative to which the swe is computed

	layer_system (smuthi.layer.LayerSystem) – stratified medium

	Returns

	regular smuthi.field_expansion.SphericalWaveExpansion object

	
class smuthi.initial_field.DipoleSource(vacuum_wavelength, dipole_moment, position, k_parallel_array='default', azimuthal_angles_array='default')

	Class for the representation of a single point dipole source.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength (length units)

	dipole_moment (list or tuple) – (x, y, z)-coordinates of dipole moment vector

	position (list or tuple) – (x, y, z)-coordinates of dipole position

	k_parallel_array (numpy.ndarray or str) – In-plane wavenumber.
If ‘default’, use smuthi.fields.default_initial_field_k_parallel_array

	azimuthal_angles_array (numpy.ndarray or str) – Azimuthal angles for plane wave expansions
If ‘default’, use smuthi.fields.default_azimuthal_angles

	
check_dissipated_power_homogeneous_background(layer_system)

	

	
current()

	The current density takes the form

\[\mathbf{j}(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_D) \mathbf{j}_D,\]

where \(\mathbf{j}_D = -j \omega \mathbf{\mu}\), \(\mathbf{r}_D\) is the location of the dipole, \(\omega\)
is the angular frequency and \(\mathbf{\mu}\) is the dipole moment.
For further details, see ‘Principles of nano optics’ by Novotny and Hecht.

	Returns

	List of [x, y, z]-components of current density vector \(\mathbf{j}_D\)

	
dissipated_power(particle_list, layer_system, show_progress=True)

	Compute the power that the dipole feeds into the system.

It is computed according to

\[P = P_0 + \frac{\omega}{2} \mathrm{Im} (\mathbf{\mu}^* \cdot \mathbf{E}(\mathbf{r}_D))\]

where \(P_0\) is the power that the dipole would feed into an infinte homogeneous medium with the same
refractive index as the layer that contains the dipole, \(\mathbf{r}_D\) is the location of the dipole,
\(\omega\) is the angular frequency, \(\mathbf{\mu}\) is the dipole moment and \(\mathbf{E}\)
includes the reflections of the dipole field from the layer interfaces, as well as the scattered field from all
particles.

	Parameters

	
	particle_list (list of smuthi.particles.Particle objects) – scattering particles

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	show_progress (bool) – if true, display progress

	Returns

	dissipated power as float

	
dissipated_power_alternative(particle_list, layer_system)

	Compute the power that the dipole feeds into the system.

It is computed according to

\[P = P_0 + \frac{\omega}{2} \mathrm{Im} (\mathbf{\mu}^* \cdot \mathbf{E}(\mathbf{r}_D))\]

where \(P_0\) is the power that the dipole would feed into an infinte homogeneous medium with the same
refractive index as the layer that contains the dipole, \(\mathbf{r}_D\) is the location of the dipole,
\(\omega\) is the angular frequency, \(\mathbf{\mu}\) is the dipole moment and \(\mathbf{E}\)
includes the reflections of the dipole field from the layer interfaces, as well as the scattered field from all
particles. In contrast to dissipated_power, this routine relies on the scattered field piecewise expansion and
and might thus be slower.

	Parameters

	
	particle_list (list of smuthi.particles.Particle objects) – scattering particles

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	Returns

	dissipated power as float

	
dissipated_power_homogeneous_background(layer_system)

	Compute the power that the dipole would radiate in an infinite homogeneous medium of the same refractive
index as the layer that contains the dipole.

\[P_0 = \frac{|\mathbf{\mu}| k \omega^3}{12 \pi}\]

	Parameters

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	Returns

	power (float)

	
electric_field(x, y, z, layer_system, include_direct_field=True, include_layer_response=True)

	Evaluate the complex electric field of the dipole source.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	include_direct_field (bool) – if True (default), the direct dipole field is included.
otherwise, only the layer response of the dipole field is
returned.

	include_layer_response (bool) – if True (default), the layer response of the dipole field is
included. otherwise, only the direct dipole field is
returned.

	Returns

	Tuple (E_x, E_y, E_z) of electric field values

	
magnetic_field(x, y, z, layer_system, include_direct_field=True, include_layer_response=True)

	Evaluate the complex magnetic field of the dipole source.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	include_direct_field (bool) – if True (default), the direct dipole field is included.
otherwise, only the layer response of the dipole field is
returned.

	include_layer_response (bool) – if True (default), the layer response of the dipole field is
included. otherwise, only the direct dipole field is
returned.

	Returns

	Tuple (H_x, H_y, H_z) of electric field values

	
outgoing_spherical_wave_expansion(layer_system)

	The dipole field as an expansion in spherical vector wave functions.

	Parameters

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	Returns

	outgoing smuthi.field_expansion.SphericalWaveExpansion object

	
piecewise_field_expansion(layer_system, include_direct_field=True, include_layer_response=True)

	Compute a piecewise field expansion of the dipole field.

	Parameters

	
	layer_system (smuthi.layer.LayerSystem) – stratified medium

	include_direct_field (bool) – if True (default), the direct dipole field is included.
otherwise, only the layer response of the dipole field is
returned.

	include_layer_response (bool) – if True (default), the layer response of the dipole field is
included. otherwise, only the direct dipole field is
returned.

	Returns

	smuthi.field_expansion.PiecewiseWaveExpansion object

	
plane_wave_expansion(layer_system, i, k_parallel_array=None, azimuthal_angles_array=None)

	Plane wave expansion of the dipole field.

	Parameters

	
	layer_system (smuthi.layer.LayerSystem) – stratified medium

	i (int) – layer number in which to evaluate the expansion

	k_parallel_array (numpy.ndarray) – in-plane wavenumber array for the expansion. if none specified,
self.k_parallel_array is used

	azimuthal_angles_array (numpy.ndarray) – azimuthal angles for the expansion. if none specified,
self.azimuthal_angles_array is used

	Returns

	tuple of to smuthi.field_expansion.PlaneWaveExpansion objects, one for upgoing and one for downgoing
component

	
spherical_wave_expansion(particle, layer_system)

	Regular spherical wave expansion of the wave including layer system response, at the locations of the
particles.

	Parameters

	
	particle (smuthi.particles.Particle) – particle relative to which the swe is computed

	layer_system (smuthi.layer.LayerSystem) – stratified medium

	Returns

	regular smuthi.field_expansion.SphericalWaveExpansion object

	
class smuthi.initial_field.GaussianBeam(vacuum_wavelength, polar_angle, azimuthal_angle, polarization, beam_waist, k_parallel_array='default', azimuthal_angles_array='default', amplitude=1, reference_point=None)

	Class for the representation of a Gaussian beam as initial field.

	
initial_intensity(layer_system)

	Evaluate the incoming intensity of the initial field.

	Parameters

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	Returns

	A smuthi.field_expansion.FarField object holding the initial intensity information.

	
plane_wave_expansion(layer_system, i, k_parallel_array=None, azimuthal_angles_array=None)

	Plane wave expansion of the Gaussian beam.

	Parameters

	
	layer_system (smuthi.layer.LayerSystem) – stratified medium

	i (int) – layer number in which to evaluate the expansion

	k_parallel_array (numpy.ndarray) – in-plane wavenumber array for the expansion. if none specified,
self.k_parallel_array is used

	azimuthal_angles_array (numpy.ndarray) – azimuthal angles for the expansion. if none specified,
self.azimuthal_angles_array is used

	Returns

	tuple of to smuthi.field_expansion.PlaneWaveExpansion objects, one for upgoing and one for downgoing
component

	
propagated_far_field(layer_system)

	Evaluate the far field intensity of the reflected / transmitted initial field.

	Parameters

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	Returns

	A tuple of smuthi.field_expansion.FarField objects, one for forward (i.e., into the top hemisphere) and one
for backward propagation (bottom hemisphere).

	
class smuthi.initial_field.InitialField(vacuum_wavelength)

	Base class for initial field classes

	
angular_frequency()

	Angular frequency.

	Returns

	Angular frequency (float) according to the vacuum wavelength in units of c=1.

	
get_azimuthal_angles_array()

	Get azimuthal angles array which is either the default array or the one stored in the object

	
get_k_parallel_array()

	Get k_parallel array which is either the default array or the one stored in the object

	
piecewise_field_expansion(layer_system)

	

	
plane_wave_expansion(layer_system, i)

	Virtual method to be overwritten.

	
spherical_wave_expansion(particle, layer_system)

	Virtual method to be overwritten.

	
class smuthi.initial_field.InitialPropagatingWave(vacuum_wavelength, polar_angle, azimuthal_angle, polarization, amplitude=1, reference_point=None)

	Base class for plane waves and Gaussian beams

	Parameters

	
	vacuum_wavelength (float) –

	polar_angle (float) – polar propagation angle (0 means, parallel to z-axis)

	azimuthal_angle (float) – azimuthal propagation angle (0 means, in x-z plane)

	polarization (int) – 0 for TE/s, 1 for TM/p

	amplitude (float or complex) – Electric field amplitude

	reference_point (list) – Location where electric field of incoming wave equals amplitude

	
electric_field(x, y, z, layer_system)

	Evaluate the complex electric field corresponding to the wave.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	Returns

	Tuple (E_x, E_y, E_z) of electric field values

	
magnetic_field(x, y, z, layer_system)

	Evaluate the complex magnetic field corresponding to the wave.

	Parameters

	
	x (array like) – Array of x-values where to evaluate the field (length unit)

	y (array like) – Array of y-values where to evaluate the field (length unit)

	z (array like) – Array of z-values where to evaluate the field (length unit)

	layer_system (smuthi.layer.LayerSystem) – Stratified medium

	Returns

	Tuple (H_x, H_y, H_z) of magnetic field values

	
piecewise_field_expansion(layer_system)

	Compute a piecewise field expansion of the initial field.

	Parameters

	layer_system (smuthi.layer.LayerSystem) – stratified medium

	Returns

	smuthi.field_expansion.PiecewiseWaveExpansion object

	
spherical_wave_expansion(particle, layer_system)

	Regular spherical wave expansion of the wave including layer system response, at the locations of the
particles.

	Parameters

	
	particle (smuthi.particles.Particle) – particle relative to which the swe is computed

	layer_system (smuthi.layer.LayerSystem) – stratified medium

	Returns

	regular smuthi.field_expansion.SphericalWaveExpansion object

	
class smuthi.initial_field.PlaneWave(vacuum_wavelength, polar_angle, azimuthal_angle, polarization, amplitude=1, reference_point=None)

	Class for the representation of a plane wave as initial field.

	Parameters

	
	vacuum_wavelength (float) –

	polar_angle (float) – polar angle of k-vector (0 means, k is parallel to z-axis)

	azimuthal_angle (float) – azimuthal angle of k-vector (0 means, k is in x-z plane)

	polarization (int) – 0 for TE/s, 1 for TM/p

	amplitude (float or complex) – Plane wave amplitude at reference point

	reference_point (list) – Location where electric field of incoming wave equals amplitude

	
plane_wave_expansion(layer_system, i)

	Plane wave expansion for the plane wave including its layer system response. As it already is a plane wave,
the plane wave expansion is somehow trivial (containing only one partial wave, i.e., a discrete plane wave
expansion).

	Parameters

	
	layer_system (smuthi.layers.LayerSystem) – Layer system object

	i (int) – layer number in which the plane wave expansion is valid

	Returns

	Tuple of smuthi.field_expansion.PlaneWaveExpansion objects. The first element is an upgoing PWE, whereas the
second element is a downgoing PWE.

smuthi.layers

Provide class for the representation of planar layer systems.

	
class smuthi.layers.LayerSystem(thicknesses=None, refractive_indices=None)

	Stack of planar layers.

	Parameters

	
	thicknesses (list) – layer thicknesses, first and last are semi inf and set to 0 (length unit)

	refractive_indices (list) – complex refractive indices in the form n+jk

	
is_degenerate()

	Returns True if the layer system consists of only two layers of the same material.
This function is useful for detecting if layer mediated coupling can be omitted
when calculating the coupling between particles.

	Returns

	True if layer system is degenerate. False otherwise.

	
layer_number(z)

	Return number of layer that contains point [0,0,z]

If z is on the interface, the higher layer number is selected.

	Parameters

	z (float) – z-coordinate of query point (length unit)

	Returns

	number of layer containing z

	
lower_zlimit(i)

	Return the z-coordinate of lower boundary

The coordinate system is defined such that z=0 corresponds to the interface between layer 0 and layer 1.

	Parameters

	i (int) – index of layer in question (must be between 0 and number_of_layers-1)

	Returns

	z-coordinate of lower boundary

	
number_of_layers()

	Return total number of layers

	Returns

	number of layers

	
reference_z(i)

	Return the anchor point’s z-coordinate.

The coordinate system is defined such that z=0 corresponds to the interface between layer 0 and layer 1.

	Parameters

	i (int) – index of layer in question (must be between 0 and number_of_layers-1)

	Returns

	anchor point’s z-coordinate

	
response(pwe, from_layer, to_layer)

	Evaluate the layer system response to an electromagnetic excitation inside the layer system.

	Parameters

	
	pwe (tuple or smuthi.field_expansion.PlaneWaveExpansion) – Either specify a PlaneWaveExpansion object that
that represents the electromagnetic excitation,
or a tuple of two PlaneWaveExpansion objects
representing the upwards- and downwards
propagating partial waves of the excitation.

	from_layer (int) – Layer number in which the excitation is located

	to_layer (int) – Layer number in which the layer response is to be evaluated

	Returns

	Tuple (pwe_up, pwe_sown) of PlaneWaveExpansion objects representing the layer system response to the
excitation.

	
upper_zlimit(i)

	Return the z-coordinate of upper boundary.

The coordinate system is defined such that z=0 corresponds to the interface between layer 0 and layer 1.

	Parameters

	i (int) – index of layer in question (must be between 0 and number_of_layers-1)

	Returns

	z-coordinate of upper boundary

	
wavenumber(layer_number, vacuum_wavelength)

	
	Parameters

	
	layer_number (int) – number of layer in question

	vacuum_wavelength (float) – vacuum wavelength

	Returns

	wavenumber in that layer as float

	
smuthi.layers.fresnel_r(pol, kz1, kz2, n1, n2)

	Fresnel reflection coefficient.

	Parameters

	
	pol (int) – polarization (0=TE, 1=TM)

	kz1 (float or array) – incoming wave’s z-wavenumber (k*cos(alpha1))

	kz2 (float or array) – transmitted wave’s z-wavenumber (k*cos(alpha2))

	n1 (float or complex) – first medium’s complex refractive index (n+ik)

	n2 (float or complex) – second medium’s complex refractive index (n+ik)

	Returns

	Complex Fresnel reflection coefficient (float or array)

	
smuthi.layers.fresnel_t(pol, kz1, kz2, n1, n2)

	Fresnel transmission coefficient.

	Parameters

	
	pol (int) – polarization (0=TE, 1=TM)

	kz1 (float or array) – incoming wave’s z-wavenumber (k*cos(alpha1))

	kz2 (float or array) – transmitted wave’s z-wavenumber (k*cos(alpha2))

	n1 (float or complex) – first medium’s complex refractive index (n+ik)

	n2 (float or complex) – second medium’s complex refractive index (n+ik)

	Returns

	Complex Fresnel transmission coefficient (float or array)

	
smuthi.layers.interface_transition_matrix(pol, kz1, kz2, n1, n2)

	Interface transition matrix to be used in the Transfer matrix algorithm.

	Parameters

	
	pol (int) – polarization (0=TE, 1=TM)

	kz1 (float or array) – incoming wave’s z-wavenumber (k*cos(alpha1))

	kz2 (float or array) – transmitted wave’s z-wavenumber (k*cos(alpha2))

	n1 (float or complex) – first medium’s complex refractive index (n+ik)

	n2 (float or complex) – second medium’s complex refractive index (n+ik)

	Returns

	Interface transition matrix as 2x2 numpy array or as 2x2 mpmath.matrix

	
smuthi.layers.layer_propagation_matrix(kz, d)

	Layer propagation matrix to be used in the Transfer matrix algorithm.

	Parameters

	
	kz (float or complex) – z-wavenumber (k*cos(alpha))

	d (float) – thickness of layer

	Returns

	Layer propagation matrix as 2x2 numpy array or as 2x2 mpmath.matrix

	
smuthi.layers.layersystem_scattering_matrix(pol, layer_d, layer_n, kpar, omega)

	Scattering matrix of a planarly layered medium.

	Parameters

	
	pol (int) – polarization(0=TE, 1=TM)

	layer_d (list) – layer thicknesses

	layer_n (list) – complex layer refractive indices

	kpar (float) – in-plane wavenumber

	omega (float) – angular frequency in units of c=1: omega=2*pi/lambda

	Returns

	Scattering matrix as 2x2 numpy array or as 2x2 mpmath.matrix

	
smuthi.layers.layersystem_transfer_matrix(pol, layer_d, layer_n, kpar, omega)

	Transfer matrix of a planarly layered medium.

	Parameters

	
	pol (int) – polarization(0=TE, 1=TM)

	layer_d (list) – layer thicknesses

	layer_n (list) – complex layer refractive indices

	kpar (float) – in-plane wavenumber

	omega (float) – angular frequency in units of c=1: omega=2*pi/lambda

	Returns

	Transfer matrix as 2x2 numpy array or as 2x2 mpmath.matrix

	
smuthi.layers.matrix_inverse(m)

	
	Parameters

	m (mpmath.matrix or numpy.ndarray) – matrix to invert

	Returns

	inverse of m with same data type as m1 and m2

	
smuthi.layers.matrix_product(m1, m2)

	
	Parameters

	
	m1 (mpmath.matrix or numpy.ndarray) – first matrix

	m2 (mpmath.matrix or numpy.ndarray) – second matrix

	Returns

	matrix product m1 * m2 with same data type as m1 and m2

	
smuthi.layers.set_precision(prec=None)

	Set the numerical precision of the layer system response. You can use this to evaluate the layer response of
unstable systems, for example in the case of evanescent waves in very thick layers. Calculations take longer time if
the precision is set to a value other than None (default).

	Parameters

	prec (None or int) – If None, calculations are done using standard double precision. If int, that many decimal
digits are considered in the calculations, using the mpmath package.

smuthi.particles

Classes for the representation of scattering particles.

	
class smuthi.particles.AnisotropicSphere(position=None, euler_angles=None, polar_angle=0, azimuthal_angle=0, refractive_index=(1+0j), radius=1, refractive_index_z=(2+0j), l_max=None, m_max=None, n_rank=None)

	Particle subclass for anisotropic spheres.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Euler angles [alpha, beta, gamma] in (zy’z’’-convention) in radian.
Alternatively, you can specify the polar and azimuthal angle of the axis of
revolution.

	polar_angle (float) – Polar angle of axis of revolution.

	azimuthal_angle (float) – Azimuthal angle of axis of revolution.

	refractive_index (complex) – Complex refractive index of particle in x-y plane (if not rotated)

	refractive_index_z (complex) – Complex refractive index of particle along z-axis (if not rotated)

	radius (float) – Sphere radius

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	n_rank (int) – Maximal multipole order used for in NFMDS (default: l_max + 5)

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
class smuthi.particles.CustomParticle(position=None, euler_angles=None, polar_angle=0, azimuthal_angle=0, refractive_index=(1+0j), geometry_filename=None, scale=1, l_max=None, m_max=None, n_rank=None)

	Particle subclass for custom particle shapes defined via FEM file.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Euler angles [alpha, beta, gamma] in (zy’z’’-convention) in radian.
Alternatively, you can specify the polar and azimuthal angle of the axis of
revolution.

	polar_angle (float) – Polar angle of axis of revolution.

	azimuthal_angle (float) – Azimuthal angle of axis of revolution.

	geometry_filename (string) – Path to FEM file

	scale (float) – Scaling factor for particle dimensions (relative to provided dimensions)

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	n_rank (int) – Maximal multipole order used for in NFMDS (default: l_max + 5)

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
class smuthi.particles.FiniteCylinder(position=None, euler_angles=None, polar_angle=0, azimuthal_angle=0, refractive_index=(1+0j), cylinder_radius=1, cylinder_height=1, l_max=None, m_max=None, n_rank=None, use_python_tmatrix=False, nint=100)

	Particle subclass for finite cylinders.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Euler angles [alpha, beta, gamma] in (zy’z’’-convention) in radian.
Alternatively, you can specify the polar and azimuthal angle of the axis of
revolution.

	polar_angle (float) – Polar angle of axis of revolution.

	azimuthal_angle (float) – Azimuthal angle of axis of revolution.

	refractive_index (complex) – Complex refractive index of particle

	cylinder_radius (float) – Radius of cylinder (length unit)

	cylinder_height (float) – Height of cylinder, in z-direction if not rotated (length unit)

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	n_rank (int) – Maximal multipole order used for in NFMDS (default: l_max + 5)

	use_python_tmatrix (bool) – If true, use Alan Zhan’s Python code to compute the T-matrix rather than NFM-DS

	nint (int) – Number of angles used in integral (only for python t-mnatrix)

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
class smuthi.particles.LayeredSpheroid(position=None, euler_angles=None, polar_angle=0, azimuthal_angle=0, layer_refractive_indices=(1+0j), layer_semi_axes_c=1, layer_semi_axes_a=1, l_max=None, m_max=None, n_rank=None)

	Particle subclass for layered spheroid.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Euler angles [alpha, beta, gamma] in (zy’z’’-convention) in radian.
Alternatively, you can specify the polar and azimuthal angle of the axis of
revolution.

	polar_angle (float) – Polar angle of axis of revolution.

	azimuthal_angle (float) – Azimuthal angle of axis of revolution.

	layer_refractive_indices (complex) – Complex refractive index of particle

	layer_semi_axes_c (float) – Spheroid half axis in direction of axis of revolution (z-axis if not rotated)

	layer_semi_axes_a (float) – Spheroid half axis in lateral direction (x- and y-axis if not rotated)

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	n_rank (int) – Maximal multipole order used in NFMDS (default: l_max + 5)

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
class smuthi.particles.Particle(position=None, euler_angles=None, refractive_index=(1+0j), l_max=None, m_max=None)

	Base class for scattering particles.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Particle Euler angles in the format [alpha, beta, gamma]

	refractive_index (complex) – Complex refractive index of particle

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
is_inside(x, y, z)

	Virtual method to be overwritten.
Until all child classes implement it: return False

	
is_outside(x, y, z)

	Virtual method to be overwritten.
Until all child classes implement it: return True

	
class smuthi.particles.Sphere(position=None, refractive_index=(1+0j), radius=1, l_max=None, m_max=None)

	Particle subclass for spheres.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	refractive_index (complex) – Complex refractive index of particle

	radius (float) – Particle radius (length unit)

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

	
is_inside(x, y, z)

	Virtual method to be overwritten.
Until all child classes implement it: return False

	
is_outside(x, y, z)

	Virtual method to be overwritten.
Until all child classes implement it: return True

	
class smuthi.particles.Spheroid(position=None, euler_angles=None, polar_angle=0, azimuthal_angle=0, refractive_index=(1+0j), semi_axis_c=1, semi_axis_a=1, l_max=None, m_max=None, n_rank=None)

	Particle subclass for spheroids.

	Parameters

	
	position (list) – Particle position in the format [x, y, z] (length unit)

	euler_angles (list) – Euler angles [alpha, beta, gamma] in (zy’z’’-convention) in radian.
Alternatively, you can specify the polar and azimuthal angle of the axis of
revolution.

	polar_angle (float) – Polar angle of axis of revolution.

	azimuthal_angle (float) – Azimuthal angle of axis of revolution.

	refractive_index (complex) – Complex refractive index of particle

	semi_axis_c (float) – Spheroid half axis in direction of axis of revolution (z-axis if not rotated)

	semi_axis_a (float) – Spheroid half axis in lateral direction (x- and y-axis if not rotated)

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	n_rank (int) – Maximal multipole order used in NFMDS (default: l_max + 5)

	
circumscribing_sphere_radius()

	Virtual method to be overwritten

	
compute_t_matrix(vacuum_wavelength, n_medium)

	Return the T-matrix of a particle.

	Parameters

	
	vacuum_wavelength (float) –

	n_medium (float or complex) – Refractive index of surrounding medium

	particle (smuthi.particles.Particle) – Particle object

	Returns

	T-matrix as ndarray

The smuthi.fields package

fields

This subpackage contains functionality that has to do with the
representation of electromagnetic fields in spherical or plane vector wave
functions.
The __init__ module contains some helper functions (e.g. with respect to
SVWF indexing) and is the place to store default coordinate arrays for
Sommerfeld integrals and field expansions.

	
smuthi.fields.angular_arrays(angular_resolution=0.008726646259971648)

	Return azimuthal and polar angular arrays with a certain angular resolution

	
smuthi.fields.angular_frequency(vacuum_wavelength)

	Angular frequency \(\omega = 2\pi c / \lambda\)

	Parameters

	vacuum_wavelength (float) – Vacuum wavelength in length unit

	Returns

	Angular frequency in the units of c=1 (time units=length units).
This is at the same time the vacuum wavenumber.

	
smuthi.fields.blocksize

	Number of coefficients in outgoing or regular spherical wave expansion for a single particle.

	Parameters

	
	l_max (int) – Maximal multipole degree

	m_max (int) – Maximal multipole order

	Returns

	Number of indices for one particle, which is the maximal index plus 1.

	
smuthi.fields.branchpoint_correction(layer_refractive_indices, n_effective_array, neff_minimal_branchpoint_distance)

	Check if an array of complex effective refractive index values (e.g. for Sommerfeld integration) contains
possible branchpoint singularities and if so, replace them by nearby non-singular locations.

	Parameters

	
	layer_refractive_indices (list or array) – Complex refractive indices of planarly layered medium

	n_effective_array (1d numpy.array) – Complex effective refractive indexc values that are to be checked
for branchpoint collision
This array is changed during the function evaluation!

	neff_minimal_branchpoint_distance (float) – Minimal distance that contour points shall have from
branchpoint singularities

	Returns

	corrected n_effective_array

	
smuthi.fields.create_k_parallel_array(vacuum_wavelength, neff_waypoints, neff_resolution)

	Construct an array of complex in-plane wavenumbers (i.e., the radial component of the cylindrical coordinates of
the wave-vector). This is used for the plane wave expansion of fields and for Sommerfeld integrals.
Complex contours are used to improve numerical stability
(see section 3.10.2.1 of [Egel 2018 dissertation]).

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length)

	neff_waypoints (list or ndarray) – Corner points through which the contour runs
This quantity is dimensionless (effective
refractive index, will be multiplied by vacuum
wavenumber)

	neff_resolution (float) – Resolution of contour, again in terms of
effective refractive index

	Returns

	Array \(\kappa_i\) of in-plane wavenumbers (inverse length)

	
smuthi.fields.create_neff_array(neff_waypoints, neff_resolution)

	Construct an array of complex effective refractive index values. The effective refractive index is a
dimensionless quantity that will be multiplied by vacuum wavenumber to yield the in-plane component of a wave vector.
This is used for the plane wave expansion of fields and for Sommerfeld integrals. Complex contours are used to
improve numerical stability (see section 3.10.2.1 of [Egel 2018 dissertation]).

	Parameters

	
	neff_waypoints (list or ndarray) – Corner points through which the contour runs

	neff_resolution (float) – Resolution of contour (i.e., distance between adjacent elements)

	Returns

	Array of complex effective refractive index values

	
smuthi.fields.default_Sommerfeld_k_parallel_array = None

	Default n_effective array for the initial field (beams, dipoles) - needs to be set, e.g. at beginning of simulation

	
smuthi.fields.default_polar_angles = None

	Default n_effective array for Sommerfeld integrals - needs to be set, e.g. at beginning of simulation

	
smuthi.fields.k_z(k_parallel=None, n_effective=None, k=None, omega=None, vacuum_wavelength=None, refractive_index=None)

	z-component \(k_z=\sqrt{k^2-\kappa^2}\) of the wavevector. The branch cut is defined such that the imaginary
part is not negative, compare section 2.3.1 of [Egel 2018 dissertation].
Not all of the arguments need to be specified.

	Parameters

	
	k_parallel (numpy ndarray) – In-plane wavenumber \(\kappa\) (inverse length)

	n_effective (numpy ndarray) – Effective refractive index \(n_\mathrm{eff}\)

	k (float) – Wavenumber (inverse length)

	omega (float) – Angular frequency \(\omega\) or vacuum wavenumber (inverse length, c=1)

	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length)

	refractive_index (complex) – Refractive index \(n_i\) of material

	Returns

	z-component \(k_z\) of wavenumber with non-negative imaginary part (inverse length)

	
smuthi.fields.multi_to_single_index

	Unique single index for the totality of indices characterizing a svwf expansion coefficient.

The mapping follows the scheme:

	single index

	spherical wave expansion indices

	\(n\)

	\(\tau\)

	\(l\)

	\(m\)

	1

	1

	1

	-1

	2

	1

	1

	0

	3

	1

	1

	1

	4

	1

	2

	-2

	5

	1

	2

	-1

	6

	1

	2

	0

	…

	…

	…

	…

	…

	1

	l_max

	m_max

	…

	2

	1

	-1

	…

	…

	…

	…

	Parameters

	
	tau (int) – Polarization index \(\tau\) (0=spherical TE, 1=spherical TM)

	l (int) – Degree \(l\) (1, …, lmax)

	m (int) – Order \(m\) (-min(l,mmax),…,min(l,mmax))

	l_max (int) – Maximal multipole degree

	m_max (int) – Maximal multipole order

	Returns

	single index (int) subsuming \((\tau, l, m)\)

	
smuthi.fields.reasonable_Sommerfeld_kpar_contour(vacuum_wavelength, neff_waypoints=None, layer_refractive_indices=None, neff_imag=0.01, neff_max=None, neff_max_offset=1, neff_resolution=0.01, neff_minimal_branchpoint_distance=None)

	Return a reasonable k_parallel array that is suitable as a Sommerfeld integral contour.
Use this function if you don’t want to care for numerical details of your simulation.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length)

	neff_waypoints (list or ndarray) – Corner points through which the contour runs
This quantity is dimensionless (effective
refractive index, will be multiplied by vacuum
wavenumber)
If not provided, reasonable waypoints are estimated.

	layer_refractive_indices (list) – Complex refractive indices of planarly layered medium
Only needed when no neff_waypoints are provided

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).
Only needed when no neff_waypoints are provided

	neff_max (float) – Truncation value of contour (in terms of effective refractive index).
Only needed when no neff_waypoints are provided

	neff_max_offset (float) – Use the last estimated singularity location plus this value (in terms of
effective refractive index). Default=1
Only needed when no neff_waypoints are provided and if no value for neff_max
is specified.

	neff_resolution (float) – Resolution of contour, again in terms of effective refractive index

	neff_minimal_branchpoint_distance (float) – Minimal distance that contour points shall have from
branchpoint singularities (in terms of effective refractive
index). This is only relevant if not deflected into imaginary.
Default: One fifth of neff_resolution

	Returns

	Array \(\kappa_i\) of in-plane wavenumbers (inverse length)

	
smuthi.fields.reasonable_Sommerfeld_neff_contour(neff_waypoints=None, layer_refractive_indices=None, neff_imag=0.01, neff_max=None, neff_max_offset=1, neff_resolution=0.01, neff_minimal_branchpoint_distance=None)

	Return a reasonable n_effective array that is suitable for the construction of a Sommerfeld k_parallel integral
contour. Use this function if you don’t want to care for numerical details of your simulation.

	Parameters

	
	neff_waypoints (list or ndarray) – Corner points through which the contour runs
This quantity is dimensionless (effective
refractive index, will be multiplied by vacuum
wavenumber)
If not provided, reasonable waypoints are estimated.

	layer_refractive_indices (list) – Complex refractive indices of planarly layered medium
Only needed when no neff_waypoints are provided

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).
Only needed when no neff_waypoints are provided

	neff_max (float) – Truncation value of contour (in terms of effective refractive index).
Only needed when no neff_waypoints are provided

	neff_max_offset (float) – Use the last estimated singularity location plus this value (in terms of
effective refractive index). Default=1
Only needed when no neff_waypoints are provided and if no value for neff_max
is specified.

	neff_resolution (float) – Resolution of contour, again in terms of effective refractive index

	neff_minimal_branchpoint_distance (float) – Minimal distance that contour points shall have from
branchpoint singularities (in terms of effective refractive
index). This is only relevant if not deflected into imaginary.
Default: One fifth of neff_resolution

	Returns

	Array of complex effective refractive index values

	
smuthi.fields.reasonable_neff_waypoints(layer_refractive_indices=None, neff_imag=0.01, neff_max=None, neff_max_offset=1)

	Construct a reasonable list of waypoints for a k_parallel array of plane wave expansions.
The waypoints mark a contour through the complex plane such that possible waveguide mode and
branchpoint singularity locations are avoided (see section 3.10.2.1 of [Egel 2018 dissertation]).

	Parameters

	
	layer_refractive_indices (list or array) – Complex refractive indices of the plane layer system

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).

	neff_max (float) – Truncation value of contour (in terms of effective refractive
index).

	neff_max_offset (float) – If no value for neff_max is specified, use the last estimated
singularity location plus this value (in terms of effective
refractive index). Default=1

	Returns

	List of complex waypoint values.

fields.expansions

Classes to manage the expansion of the electric field in plane wave and
spherical wave basis sets.

	
class smuthi.fields.expansions.FieldExpansion

	Base class for field expansions.

	
diverging(x, y, z)

	Test if points are in domain where expansion could diverge. Virtual
method to be overwritten in child
classes.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
divergence domain.

	
electric_field(x, y, z)

	Evaluate electric field. Virtual method to be overwritten in child
classes.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	Tuple of (E_x, E_y, E_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field.

	
magnetic_field(x, y, z, vacuum_wavelength)

	Evaluate magnetic field. Virtual method to be overwritten in child
classes.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	vacuum_wavelength (float) – Vacuum wavelength in length units

	Returns

	Tuple of (H_x, H_y, H_z) numpy.ndarray objects with the Cartesian
coordinates of complex magnetic field.

	
valid(x, y, z)

	Test if points are in definition range of the expansion.
Abstract method to be overwritten in child classes.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
definition domain.

	
class smuthi.fields.expansions.PiecewiseFieldExpansion

	Manage a field that is expanded in different ways for different
domains, i.e., an expansion of the kind

\[\mathbf{E}(\mathbf{r}) = \sum_{i} \mathbf{E}_i(\mathbf{r}),\]

where

\[\begin{split}\mathbf{E}_i(\mathbf{r}) = \begin{cases} \tilde{\mathbf{E}}_i(\mathbf{r}) & \text{ if }\mathbf{r}\in D_i \\ 0 & \text{ else} \end{cases}\end{split}\]

and \(\tilde{\mathbf{E_i}}(\mathbf{r})\) is either a plane wave
expansion or a spherical wave expansion, and
\(D_i\) is its domain of validity.

	
compatible(other)

	Returns always true, because any field expansion can be added to a
piecewise field expansion.

	
diverging(x, y, z)

	Test if points are in domain where expansion could diverge.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
divergence domain.

	
electric_field(x, y, z)

	Evaluate electric field.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	Tuple of (E_x, E_y, E_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field.

	
magnetic_field(x, y, z, vacuum_wavelength)

	Evaluate magnetic field. Virtual method to be overwritten in child
classes.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	vacuum_wavelength (float) – Vacuum wavelength in length units

	Returns

	Tuple of (H_x, H_y, H_z) numpy.ndarray objects with the Cartesian
coordinates of complex magnetic field.

	
valid(x, y, z)

	Test if points are in definition range of the expansion.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
definition domain.

	
class smuthi.fields.expansions.PlaneWaveExpansion(k, k_parallel, azimuthal_angles, kind=None, reference_point=None, lower_z=-inf, upper_z=inf)

	A class to manage plane wave expansions of the form

\[\mathbf{E}(\mathbf{r}) = \sum_{j=1}^2 \iint \mathrm{d}^2\mathbf{k}_\parallel \, g_{j}(\kappa, \alpha)
\mathbf{\Phi}^\pm_j(\kappa, \alpha; \mathbf{r} - \mathbf{r}_i)\]

for \(\mathbf{r}\) located in a layer defined by \(z\in [z_{min}, z_{max}]\)
and \(\mathrm{d}^2\mathbf{k}_\parallel = \kappa\,\mathrm{d}\alpha\,\mathrm{d}\kappa\).

The double integral runs over \(\alpha\in[0, 2\pi]\) and \(\kappa\in[0,\kappa_\mathrm{max}]\).
Further, \(\mathbf{\Phi}^\pm_j\) are the PVWFs, see plane_vector_wave_function().

Internally, the expansion coefficients \(g_{ij}^\pm(\kappa, \alpha)\)
are stored as a 3-dimensional numpy ndarray.

If the attributes k_parallel and azimuthal_angles have only a single entry,
a discrete distribution is assumed:

\[g_{j}^\pm(\kappa, \alpha) \sim \delta^2(\mathbf{k}_\parallel - \mathbf{k}_{\parallel, 0})\]

	Parameters

	
	k (float) – wavenumber in layer where expansion is valid

	k_parallel (numpy ndarray) – array of in-plane wavenumbers (can be float or complex)

	azimuthal_angles (numpy ndarray) – \(\alpha\), from 0 to \(2\pi\)

	kind (str) – ‘upgoing’ for \(g^+\) and ‘downgoing’ for \(g^-\) type
expansions

	reference_point (list or tuple) – [x, y, z]-coordinates of point relative to which the plane waves are
defined.

	lower_z (float) – the expansion is valid on and above that z-coordinate

	upper_z (float) – the expansion is valid below that z-coordinate

	
coefficients

	coefficients[j, k, l] contains

	Type

	numpy ndarray

	
:math:`g^pm_{j}

	
	Type

	kappa_{k}, alpha_{l}

	
class OptimizationMethodsForLinux

	An enumeration.

	
evaluate_r_times_eikr

	Attention! Sometimes this function can decrease speed on 1 core mode.
Here foo_x, foo_y, foo_z are supposed to be 2dim arrays with [None, :, :].
This function can replace snippet

exp_j = np.exp(1j * exp_feed)
foo_x_eikr = foo_x * exp_j
foo_y_eikr = foo_y * exp_j
foo_z_eikr = foo_z * exp_j

by

foo_x_eikr, foo_y_eikr, foo_z_eikr = numba_multiple_on_exp(foo_x, foo_y, foo_z, kr).

	
numba_3tensordots_1dim_times_2dim

	This function can replace snippet

‘foo = np.tensordot(x_float_1dim, x_complex_2dim, axes=0)

foo += np.tensordot(y_float_1dim, y_complex_2dim, axes=0)

foo += np.tensordot(z_float_1dim, z_complex_2dim, axes=0)’

by

	‘foo = get_3_tensordots(x_float_1dim, y_float_1dim, z_float_1dim,

	x_complex_2dim, y_complex_2dim, z_complex_2dim)’

	
numba_trapz_3dim_array

	This function can replace snippet

‘foo = np.trapz(y, x)’

by

‘foo = numba_trapz_3dim_array(y, x)’

	
class OptimizationMethodsFor_Not_Linux

	An enumeration.

	
evaluate_r_times_eikr

	

	
numba_3tensordots_1dim_times_2dim

	

	
numba_trapz_3dim_array

	

	
class RawSliceOfField(axis, chunks, values)

	

	
azimuthal_angle_grid()

	Meshgrid of azimuthal_angles with respect to n_effective

	
compatible(other)

	Check if two plane wave expansions are compatible in the sense that
they can be added coefficient-wise

	Parameters

	other (FieldExpansion) – expansion object to add to this object

	Returns

	bool (true if compatible, false else)

	
diverging(x, y, z)

	Test if points are in domain where expansion could diverge.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
divergence domain.

	
electric_field(x, y, z, max_chunksize=50, cpu_precision='single precision')

	Evaluate electric field.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	max_chunksize (int) – max number of field points that are simultaneously
evaluated when running in CPU mode.
In Windows/MacOS max_chunksize = chunksize,
in Linux it can be decreased considering available CPU cores.

	cpu_precision (string) – set ‘double precision’ to use float64 and complex128 types
instead of float32 and complex64

	Returns

	Tuple of (E_x, E_y, E_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field.

	
k_parallel_grid()

	Meshgrid of n_effective with respect to azimuthal_angles

	
k_z()

	

	
k_z_grid()

	

	
magnetic_field(x, y, z, vacuum_wavelength, max_chunksize=50, cpu_precision='single precision')

	Evaluate magnetic field.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	vacuum_wavelength (float) – Vacuum wavelength in length units

	chunksize (int) – number of field points that are simultaneously
evaluated when running in CPU mode

	Returns

	Tuple of (H_x, H_y, H_z) numpy.ndarray objects with the Cartesian
coordinates of complex magnetic field.

	
set_reference_point(new_reference_point)

	Set a new reference point. This implies also a phase factor on the
coefficients.

	Parameters

	new_reference_point (list or tuple) – [x, y, z]-coordinates of
point relative to which the
plane waves are defined.

	
valid(x, y, z)

	Test if points are in definition range of the expansion.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
definition domain.

	
class smuthi.fields.expansions.SphericalWaveExpansion(k, l_max, m_max=None, kind=None, reference_point=None, lower_z=-inf, upper_z=inf, inner_r=0, outer_r=inf)

	A class to manage spherical wave expansions of the form

\[\mathbf{E}(\mathbf{r}) = \sum_{\tau=1}^2 \sum_{l=1}^\infty \sum_{m=-l}^l a_{\tau l m}
\mathbf{\Psi}^{(\nu)}_{\tau l m}(\mathbf{r} - \mathbf{r}_i)\]

for \(\mathbf{r}\) located in a layer defined by
\(z\in [z_{min}, z_{max}]\)
and where \(\mathbf{\Psi}^{(\nu)}_{\tau l m}\) are the SVWFs, see
smuthi.vector_wave_functions.spherical_vector_wave_function().

Internally, the expansion coefficients \(a_{\tau l m}\) are stored as a
1-dimensional array running over a multi index \(n\) subsumming over
the SVWF indices \((\tau,l,m)\). The
mapping from the SVWF indices to the multi
index is organized by the function multi_to_single_index().

	Parameters

	
	k (float) – wavenumber in layer where expansion is valid

	l_max (int) – maximal multipole degree \(l_\mathrm{max}\geq 1\)
where to truncate the expansion.

	m_max (int) – maximal multipole order \(0 \leq m_\mathrm{max} \leq l_\mathrm{max}\)
where to truncate the
expansion.

	kind (str) – ‘regular’ for \(\nu=1\) or ‘outgoing’ for \(\nu=3\)

	reference_point (list or tuple) – [x, y, z]-coordinates of point relative
to which the spherical waves are
considered (e.g., particle center).

	lower_z (float) – the expansion is valid on and above that z-coordinate

	upper_z (float) – the expansion is valid below that z-coordinate

	inner_r (float) – radius inside which the expansion diverges
(e.g. circumscribing sphere of particle)

	outer_r (float) – radius outside which the expansion diverges

	
coefficients

	expansion coefficients \(a_{\tau l m}\) ordered by multi index \(n\)

	Type

	numpy ndarray

	
coefficients_tlm(tau, l, m)

	SWE coefficient for given (tau, l, m)

	Parameters

	
	tau (int) – SVWF polarization (0 for spherical TE, 1 for spherical TM)

	l (int) – SVWF degree

	m (int) – SVWF order

	Returns

	SWE coefficient

	
compatible(other)

	Check if two spherical wave expansions are compatible in the sense
that they can be added coefficient-wise

	Parameters

	other (FieldExpansion) – expansion object to add to this object

	Returns

	bool (true if compatible, false else)

	
diverging(x, y, z)

	Test if points are in domain where expansion could diverge.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
divergence domain.

	
electric_field(x, y, z)

	Evaluate electric field.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	Tuple of (E_x, E_y, E_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field.

	
magnetic_field(x, y, z, vacuum_wavelength)

	Evaluate magnetic field.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	vacuum_wavelength (float) – Vacuum wavelength in length units

	Returns

	Tuple of (H_x, H_y, H_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field.

	
valid(x, y, z)

	Test if points are in definition range of the expansion.

	Parameters

	
	x (numpy.ndarray) – x-coordinates of query points

	y (numpy.ndarray) – y-coordinates of query points

	z (numpy.ndarray) – z-coordinates of query points

	Returns

	numpy.ndarray of bool datatype indicating if points are inside
definition domain.

fields.expansions_cuda

This module contains CUDA source code for the evaluation of the electric
field from a VWF expansion.

fields.transformatinos

Functions for the transformation of plane and spherical vector wave
functions as well as of plane and spherical wave fex.

	
smuthi.fields.transformations.block_rotation_matrix_D_svwf(l_max, m_max, alpha, beta, gamma, wdsympy=False)

	Rotation matrix for the rotation of SVWFs between the labratory
coordinate system (L) and a rotated coordinate system (R)

	Parameters

	
	l_max (int) – Maximal multipole degree

	m_max (int) – Maximal multipole order

	alpha (float) – First Euler angle, rotation around z-axis, in rad

	beta (float) – Second Euler angle, rotation around y’-axis in rad

	gamma (float) – Third Euler angle, rotation around z’’-axis in rad

	wdsympy (bool) – If True, Wigner-d-functions come from the sympy toolbox

	Returns

	rotation matrix of dimension [blocksize, blocksize]

	
smuthi.fields.transformations.pwe_to_swe_conversion(pwe, l_max, m_max, reference_point)

	Convert plane wave expansion object to a spherical wave expansion object.

	Parameters

	
	pwe (PlaneWaveExpansion) – Plane wave expansion to be converted

	l_max (int) – Maximal multipole degree of spherical wave expansion

	m_max (int) – Maximal multipole order of spherical wave expansion

	reference_point (list) – Coordinates of reference point in the format [x, y, z]

	Returns

	SphericalWaveExpansion object.

	
smuthi.fields.transformations.swe_to_pwe_conversion(swe, k_parallel, azimuthal_angles, layer_system=None, layer_number=None, layer_system_mediated=False, only_l=None, only_m=None, only_pol=None, only_tau=None)

	Convert SphericalWaveExpansion object to a PlaneWaveExpansion object.

	Parameters

	
	swe (SphericalWaveExpansion) – Spherical wave expansion to be converted

	k_parallel (numpy array or str) – In-plane wavenumbers for the pwe object.

	azimuthal_angles (numpy array or str) – Azimuthal angles for the pwe object

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the origin of the SWE is located

	layer_number (int) – Layer number in which the PWE should be valid.

	layer_system_mediated (bool) – If True, the PWE refers to the layer system response of the SWE,
otherwise it is the direct transform.

	only_pol (int) – if set to 0 or 1, only this plane wave polarization (0=TE, 1=TM) is considered

	only_tau (int) – if set to 0 or 1, only this spherical vector wave polarization (0 — magnetic, 1 — electric) is
considered

	only_l (int) – if set to positive number, only this multipole degree is considered

	only_m (int) – if set to non-negative number, only this multipole order is considered

	Returns

	Tuple of two PlaneWaveExpansion objects, first upgoing, second downgoing.

	
smuthi.fields.transformations.transformation_coefficients_vwf(tau, l, m, pol, kp=None, kz=None, pilm_list=None, taulm_list=None, dagger=False)

	Transformation coefficients B to expand SVWF in PVWF and vice versa:

\[B_{\tau l m,j}(x) = -\frac{1}{\mathrm{i}^{l+1}} \frac{1}{\sqrt{2l(l+1)}} (\mathrm{i} \delta_{j1} + \delta_{j2})
(\delta_{\tau j} \tau_l^{|m|}(x) + (1-\delta_{\tau j} m \pi_l^{|m|}(x))\]

For the definition of the \(\tau_l^m\) and \(\pi_l^m\) functions, see
A. Doicu, T. Wriedt, and Y. A. Eremin: “Light Scattering by Systems of Particles”, Springer-Verlag, 2006 [https://doi.org/10.1007/978-3-540-33697-6]

Compare also section 2.3.3 of [Egel 2018 diss].

	Parameters

	
	tau (int) – SVWF polarization, 0 for spherical TE, 1 for spherical TM

	l (int) – l=1,… SVWF multipole degree

	m (int) – m=-l,…,l SVWF multipole order

	pol (int) – PVWF polarization, 0 for TE, 1 for TM

	kp (numpy array) – PVWF in-plane wavenumbers

	kz (numpy array) – complex numpy-array: PVWF out-of-plane wavenumbers

	pilm_list (list) – 2D list numpy-arrays: alternatively to kp and kz, pilm and taulm as generated with
legendre_normalized can directly be handed

	taulm_list (list) – 2D list numpy-arrays: alternatively to kp and kz, pilm and taulm as generated with
legendre_normalized can directly be handed

	dagger (bool) – switch on when expanding PVWF in SVWF and off when expanding SVWF in PVWF

	Returns

	Transformation coefficient as array (size like kp).

	
smuthi.fields.transformations.translation_block(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, kind)

	
	Direct particle translation matrix \(W\) for two particles that do not have intersecting circumscribing spheres.

	This routine is explicit.

To reduce computation time, this routine relies on two internal accelerations.
First, in most cases the number of unique maximum multipole indicies,
\((\tau, l_{max}, m_{max})\), is much less than the number of unique particles.
Therefore, all calculations that depend only on multipole indicies are stored in an
intermediate hash table. Second, Cython acceleration is used by default to leverage
fast looping. If the Cython files are not supported, this routine will
fall back on equivalent Python looping.

Cython acceleration can be between 10-1,000x faster compared to the Python
equivalent. Speed variability depends on the number of unique multipoles indicies,
the size of the largest multipole order, and if particles share the same z coordinate.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	receiving_particle (smuthi.particles.Particle) – Particle that receives the scattered field

	emitting_particle (smuthi.particles.Particle) – Particle that emits the scattered field

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the coupling takes place

	Returns

	Direct coupling matrix block as numpy array.

	
smuthi.fields.transformations.translation_coefficients_svwf(tau1, l1, m1, tau2, l2, m2, k, d, sph_hankel=None, legendre=None, exp_immphi=None)

	Coefficients of the translation operator for the expansion of an outgoing spherical wave in terms of
regular spherical waves with respect to a different origin:

\[\mathbf{\Psi}_{\tau l m}^{(3)}(\mathbf{r} + \mathbf{d} = \sum_{\tau'} \sum_{l'} \sum_{m'}
A_{\tau l m, \tau' l' m'} (\mathbf{d}) \mathbf{\Psi}_{\tau' l' m'}^{(1)}(\mathbf{r})\]

for \(|\mathbf{r}|<|\mathbf{d}|\).

See also section 2.3.3 and appendix B of [Egel 2018 diss].

	Parameters

	
	tau1 (int) – tau1=0,1: Original wave’s spherical polarization

	l1 (int) – l=1,…: Original wave’s SVWF multipole degree

	m1 (int) – m=-l,…,l: Original wave’s SVWF multipole order

	tau2 (int) – tau2=0,1: Partial wave’s spherical polarization

	l2 (int) – l=1,…: Partial wave’s SVWF multipole degree

	m2 (int) – m=-l,…,l: Partial wave’s SVWF multipole order

	k (float or complex) – wavenumber (inverse length unit)

	d (list) – translation vectors in format [dx, dy, dz] (length unit)
dx, dy, dz can be scalars or ndarrays

	sph_hankel (list) – Optional. sph_hankel[i] contains the spherical hankel funciton of degree i, evaluated at
k*d where d is the norm of the distance vector(s)

	legendre (list) – Optional. legendre[l][m] contains the legendre function of order l and degree m,
evaluated at cos(theta) where theta is the polar angle(s) of the distance vector(s)

	Returns

	translation coefficient A (complex)

	
smuthi.fields.transformations.translation_coefficients_svwf_out_to_out(tau1, l1, m1, tau2, l2, m2, k, d, sph_bessel=None, legendre=None, exp_immphi=None)

	Coefficients of the translation operator for the expansion of an outgoing spherical wave in terms of
outgoing spherical waves with respect to a different origin:

\[\mathbf{\Psi}_{\tau l m}^{(3)}(\mathbf{r} + \mathbf{d} = \sum_{\tau'} \sum_{l'} \sum_{m'}
A_{\tau l m, \tau' l' m'} (\mathbf{d}) \mathbf{\Psi}_{\tau' l' m'}^{(3)}(\mathbf{r})\]

for \(|\mathbf{r}|>|\mathbf{d}|\).

	Parameters

	
	tau1 (int) – tau1=0,1: Original wave’s spherical polarization

	l1 (int) – l=1,…: Original wave’s SVWF multipole degree

	m1 (int) – m=-l,…,l: Original wave’s SVWF multipole order

	tau2 (int) – tau2=0,1: Partial wave’s spherical polarization

	l2 (int) – l=1,…: Partial wave’s SVWF multipole degree

	m2 (int) – m=-l,…,l: Partial wave’s SVWF multipole order

	k (float or complex) – wavenumber (inverse length unit)

	d (list) – translation vectors in format [dx, dy, dz] (length unit)
dx, dy, dz can be scalars or ndarrays

	sph_bessel (list) – Optional. sph_bessel[i] contains the spherical Bessel funciton of degree i, evaluated at
k*d where d is the norm of the distance vector(s)

	legendre (list) – Optional. legendre[l][m] contains the legendre function of order l and degree m,
evaluated at cos(theta) where theta is the polar angle(s) of the distance vector(s)

	Returns

	translation coefficient A (complex)

fields.vector_wave_functions

This module contains the vector wave functions and their transformations.

	
smuthi.fields.vector_wave_functions.plane_vector_wave_function(x, y, z, kp, alpha, kz, pol)

	Electric field components of plane wave (PVWF), see section 2.3.1 of
[Egel 2018 diss].

\[\mathbf{\Phi}_j = \exp (\mathrm{i} \mathbf{k} \cdot \mathbf{r}) \hat{ \mathbf{e} }_j\]

with \(\hat{\mathbf{e}}_0\) denoting the unit vector in azimuthal direction (‘TE’ or ‘s’ polarization),
and \(\hat{\mathbf{e}}_1\) denoting the unit vector in polar direction (‘TM’ or ‘p’ polarization).

The input arrays should have one of the following dimensions:

	x,y,z: (N x 1) matrix

	kp,alpha,kz: (1 x M) matrix

	Ex, Ey, Ez: (M x N) matrix

or

	x,y,z: (M x N) matrix

	kp,alpha,kz: scalar

	Ex, Ey, Ez: (M x N) matrix

	Parameters

	
	x (numpy.ndarray) – x-coordinate of position where to test the field (length unit)

	y (numpy.ndarray) – y-coordinate of position where to test the field

	z (numpy.ndarray) – z-coordinate of position where to test the field

	kp (numpy.ndarray) – parallel component of k-vector (inverse length unit)

	alpha (numpy.ndarray) – azimthal angle of k-vector (rad)

	kz (numpy.ndarray) – z-component of k-vector (inverse length unit)

	pol (int) – Polarization (0=TE, 1=TM)

	Returns

	
	x-coordinate of PVWF electric field (numpy.ndarray)

	y-coordinate of PVWF electric field (numpy.ndarray)

	z-coordinate of PVWF electric field (numpy.ndarray)

	
smuthi.fields.vector_wave_functions.spherical_vector_wave_function(x, y, z, k, nu, tau, l, m)

	Electric field components of spherical vector wave function (SVWF). The conventions are chosen according to
A. Doicu, T. Wriedt, and Y. A. Eremin: “Light Scattering by Systems of Particles”, Springer-Verlag, 2006 [https://doi.org/10.1007/978-3-540-33697-6]
See also section 2.3.2 of [Egel 2018 diss].

	Parameters

	
	x (numpy.ndarray) – x-coordinate of position where to test the field (length unit)

	y (numpy.ndarray) – y-coordinate of position where to test the field

	z (numpy.ndarray) – z-coordinate of position where to test the field

	k (float or complex) – wavenumber (inverse length unit)

	nu (int) – 1 for regular waves, 3 for outgoing waves

	tau (int) – spherical polarization, 0 for spherical TE and 1 for spherical TM

	l (int) – l=1,… multipole degree (polar quantum number)

	m (int) – m=-l,…,l multipole order (azimuthal quantum number)

	Returns

	
	x-coordinate of SVWF electric field (numpy.ndarray)

	y-coordinate of SVWF electric field (numpy.ndarray)

	z-coordinate of SVWF electric field (numpy.ndarray)

The smuthi.linearsystem package

linearsystem

This package contains functionality that is related to the assembly or solution of the system of linear equations
that yield the solution of the scattering problem.

linearsystem.linear_system

This package contains classes and functions to represent the system of
linear equations that needs to be solved in order to solve the scattering
problem, see section 3.7 of [Egel 2018 dissertation].

Symbolically, the linear system can be written like

\[(1 - TW)b = Ta,\]

where \(T\) is the transition matrices of the particles, \(W\) is the
particle coupling matrix, \(b\) are the (unknown) coefficients of the
scattered field in terms of an outgoing spherical wave expansion and \(a\)
are the coefficients of the initial field in terms of a regular spherical wave
expansion.

	
class smuthi.linearsystem.linear_system.CouplingMatrixExplicit(vacuum_wavelength, particle_list, layer_system, k_parallel='default', use_pvwf_coupling=False, pvwf_coupling_k_parallel=None)

	Class for an explicit representation of the coupling matrix. Recommended for small particle numbers.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units

	particle_list (list) – List of smuthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	k_parallell (numpy.ndarray or str) – In-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	
class smuthi.linearsystem.linear_system.CouplingMatrixPeriodicGridNumba(initial_field, particle_list, layer_system, periodicity, ewald_sum_separation_parameter, num_threads='default')

	
	Class for an explicit representation of the coupling matrix of periodic particle arrangements.

	Computation supports Numba.

	Parameters

	
	initial_field (smuthi.initial_field.PlaneWave) – initial plane wave object

	particle_list (list) – list of smuthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	periodicity (tuple) – (a1, a2) lattice vector 1 and 2 in carthesian coordinates

	ewald_sum_separation_parameter (float) – Ewald sum separation parameter

	num_threads (int or str) – if ‘default’ all available CPU cores are used
if negative, all but num_threads are used

	
class smuthi.linearsystem.linear_system.CouplingMatrixRadialLookup(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None)

	Base class for radial lookup based coupling matrix either on CPU or on GPU (CUDA).

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	
class smuthi.linearsystem.linear_system.CouplingMatrixRadialLookupCPU(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, interpolator_kind='linear')

	Class for radial lookup based coupling matrix running on CPU. This is used when no suitable GPU device is detected
or when PyCuda is not installed.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	kind (str) – interpolation order, e.g. ‘linear’ or ‘cubic’

	
class smuthi.linearsystem.linear_system.CouplingMatrixRadialLookupCUDA(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, cuda_blocksize=None, interpolator_kind='linear')

	Radial lookup based coupling matrix either on GPU (CUDA).

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	cuda_blocksize (int) – threads per block when calling CUDA kernel

	
class smuthi.linearsystem.linear_system.CouplingMatrixVolumeLookup(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None)

	Base class for 3D lookup based coupling matrix either on CPU or on GPU (CUDA).

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	
class smuthi.linearsystem.linear_system.CouplingMatrixVolumeLookupCPU(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, interpolator_kind='cubic')

	Class for 3D lookup based coupling matrix running on CPU. This is used when no suitable GPU device is detected
or when PyCuda is not installed.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	interpolator_kind (str) – ‘linear’ or ‘cubic’ interpolation

	
class smuthi.linearsystem.linear_system.CouplingMatrixVolumeLookupCUDA(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, cuda_blocksize=None, interpolator_kind='linear')

	Class for 3D lookup based coupling matrix running on GPU.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength in length units

	particle_list (list) – list of sumthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float or None) – spatial resolution of the lookup in the radial direction

	cuda_blocksize (int) – threads per block for cuda call

	interpolator_kind (str) – ‘linear’ (default) or ‘cubic’ interpolation

	
class smuthi.linearsystem.linear_system.LinearSystem(particle_list, initial_field, layer_system, k_parallel='default', solver_type='LU', solver_tolerance=0.0001, store_coupling_matrix=True, coupling_matrix_lookup_resolution=None, interpolator_kind='cubic', cuda_blocksize=None, periodicity=None, ewald_sum_separation_parameter='default', number_of_threads_periodic='default', use_pvwf_coupling=False, pvwf_coupling_k_parallel=None)

	Manage the assembly and solution of the linear system of equations.

	Parameters

	
	particle_list (list) – List of smuthi.particles.Particle objects

	initial_field (smuthi.initial_field.InitialField) – Initial field object

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumber.
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	solver_type (str) – What solver to use? Options: ‘LU’ for LU factorization, ‘gmres’ for GMRES iterative solver

	store_coupling_matrix (bool) – If True (default), the coupling matrix is stored. Otherwise it is recomputed on
the fly during each iteration of the solver.

	coupling_matrix_lookup_resolution (float or None) – If type float, compute particle coupling by interpolation of
a lookup table with that spacial resolution. A smaller number
implies higher accuracy and memory footprint.
If None (default), don’t use a lookup table but compute the
coupling directly. This is more suitable for a small particle
number.

	interpolator_kind (str) – interpolation order to be used, e.g. ‘linear’ or ‘cubic’. This argument is ignored if
coupling_matrix_lookup_resolution is None. In general, cubic interpolation is more
accurate but a bit slower than linear.

	periodicity (tuple) – tuple (a1, a2) specifying two 3-dimensional lattice vectors in Carthesian coordinates
with a1, a2 (numpy.ndarrays)

	ewald_sum_separation_parameter (float) – Used to separate the real and reciprocal lattice sums to evaluate
particle coupling in periodic lattices.

	number_of_threads_periodic (int or str) – sets the number of threats used in a simulation with periodic particle arrangements
if ‘default’, all available CPU cores are used
if negative, all but number_of_threads_periodic are used

	use_pvwf_coupling (bool) – If set to True, plane wave coupling is used to calculate
the direct. Currently only possible in combination with direct solver strategy.

	pvwf_coupling_k_parallel (array) – k-parallel for PVWF coupling

	
compute_coupling_matrix()

	Initialize coupling matrix object.

	
compute_initial_field_coefficients()

	Evaluate initial field coefficients.

	
compute_t_matrix()

	Initialize T-matrix object.

	
prepare()

	

	
solve()

	Compute scattered field coefficients and store them
in the particles’ spherical wave expansion objects.

	
class smuthi.linearsystem.linear_system.MasterMatrix(t_matrix, coupling_matrix)

	Represent the master matrix \(M = 1 - TW\) as a linear operator.

	Parameters

	
	t_matrix (SystemMatrix) – System T-matrix

	coupling_matrix (SystemMatrix) – System coupling matrix

	
class smuthi.linearsystem.linear_system.SystemMatrix(particle_list)

	A system matrix is an abstract linear operator that operates on a
system coefficient vector, i.e. a vector \(c = c_{\tau,l,m}^i\), where
\((\tau, l, m)\) are the multipole indices and \(i\) indicates the
particle number. In other words, if we have a spherical wave expansion for
each particle, and write all the expansion coefficients of these expansions
into one (long) array, what we get is a system vector.

	
index(i, tau, l, m)

	
	Parameters

	
	i (int) – particle number

	tau (int) – spherical polarization index

	l (int) – multipole degree

	m (int) – multipole order

	Returns

	Position in a system vector that corresponds to the \((\tau, l, m)\) coefficient of the i-th particle.

	
index_block(i)

	
	Parameters

	i (int) – number of particle

	Returns

	indices that correspond to the coefficients for that particle

	
class smuthi.linearsystem.linear_system.TMatrix(particle_list)

	Collect the particle T-matrices in a global lienear operator.

	Parameters

	particle_list (list) – List of smuthi.particles.Particle objects containing a t_matrix attribute.

	
right_hand_side()

	The right hand side of the linear system is given by \(\sum_{\tau l m} T^i_{\tau l m} a^i_{\tau l m }\)

	Returns

	right hand side as a complex numpy.ndarray

linearsystem.linear_system_cuda

This module contains CUDA source code for the evaluation of the coupling
matrix from lookups.

The smuthi.linearsystem.tmatrix package

tmatrix

tmatrix.t_matrix

	
smuthi.linearsystem.tmatrix.t_matrix.internal_mie_coefficient(tau, l, k_medium, k_particle, radius)

	Return the Mie coefficients to compute the internal field of a sphere.

	Parameters

	
	integer (l) – spherical polarization, 0 for spherical TE and 1 for spherical TM

	integer – l=1,… multipole degree (polar quantum number)

	float or complex (k_particle) – wavenumber in surrounding medium (inverse length unit)

	float or complex – wavenumber inside sphere (inverse length unit)

	float (radius) – radius of sphere (length unit)

	Returns

	Internal Mie coefficients as complex

	
smuthi.linearsystem.tmatrix.t_matrix.mie_coefficient(tau, l, k_medium, k_particle, radius)

	Return the Mie coefficients of a sphere.

	Parameters

	
	integer (l) – spherical polarization, 0 for spherical TE and 1 for spherical TM

	integer – l=1,… multipole degree (polar quantum number)

	float or complex (k_particle) – wavenumber in surrounding medium (inverse length unit)

	float or complex – wavenumber inside sphere (inverse length unit)

	float (radius) – radius of sphere (length unit)

	Returns

	Mie coefficients as complex

	
smuthi.linearsystem.tmatrix.t_matrix.rotate_t_matrix(T, l_max, m_max, euler_angles, wdsympy=False)

	T-matrix of a rotated particle.

	Parameters

	
	T (numpy.array) – T-matrix

	l_max (int) – Maximal multipole degree

	m_max (int) – Maximal multipole order

	euler_angles (list) – Euler angles [alpha, beta, gamma] of rotated particle in (zy’z’’-convention) in radian

	Returns

	rotated T-matrix (numpy.array)

	
smuthi.linearsystem.tmatrix.t_matrix.t_matrix_sphere(k_medium, k_particle, radius, l_max, m_max)

	T-matrix of a spherical scattering object.

	Parameters

	
	k_medium (float or complex) – Wavenumber in surrounding medium (inverse length unit)

	k_particle (float or complex) – Wavenumber inside sphere (inverse length unit)

	radius (float) – Radius of sphere (length unit)

	l_max (int) – Maximal multipole degree

	m_max (int) – Maximal multipole order

	Returns

	T-matrix as ndarray

The smuthi.linearsystem.tmatrix.nfmds package

nfmds.indexconverter

	
smuthi.linearsystem.tmatrix.nfmds.indexconverter.multi_index_to_single_nfmds(tau, l, m, Nrank, Mrank)

	Converts a (tau,l,m) index to single index in NFMDS convention.

	Parameters

	
	tau (int) – SVWF polarization (0 for spherical TE, 1 for spherical TM)

	l (int) – SVWF degree

	m (int) – SVWF order

	Nrank (int) – NFMDS Nrank parameter

	Mrank (int) – NFMDS Mrank parameter

	Returns

	single index in NFMDS convention

	Return type

	index (int)

	
smuthi.linearsystem.tmatrix.nfmds.indexconverter.nfmds_to_smuthi_matrix

	Converts a T-matrix obtained with NFMDS to SMUTHI compatible format.

	Parameters

	
	T (array) – T-matrix in NFMDS convention

	Nrank (int) – NFMDS Nrank parameter

	Mrank (int) – NFMDS Mrank parameter

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	Returns

	T-matrix in SMUTHI convention

	Return type

	Tsm (array)

	
smuthi.linearsystem.tmatrix.nfmds.indexconverter.python_to_smuthi_matrix

	Converts a T-matrix obtained with Alan’s code to SMUTHI compatible format.

	Parameters

	
	T (array) – T-matrix in NFMDS convention

	Nrank (int) – Alan’s lmax parameter

	Mrank (int) – Alan’s lmax parameter

	l_max (int) – Maximal multipole degree used for the spherical wave expansion of incoming and
scattered field

	m_max (int) – Maximal multipole order used for the spherical wave expansion of incoming and
scattered field

	Returns

	T-matrix in SMUTHI convention

	Return type

	Tsm (array)

	
smuthi.linearsystem.tmatrix.nfmds.indexconverter.single_index_to_multi_nfmds

	Converts single index to (tau,l,m) tuple in NFMDS convention.

	Parameters

	
	index (int) – single index in NFMDS convention

	Nrank (int) – NFMDS Nrank parameter

	Mrank (int) – NFMDS Mrank parameter

	Returns

	SVWF polarization (0 for spherical TE, 1 for spherical TM)
l (int): SVWF degree
m (int): SVWF order

	Return type

	tau (int)

nfmds.stlmanager

	
smuthi.linearsystem.tmatrix.nfmds.stlmanager.convert_stl_to_fem(stlname, femname)

	Converts STL to FEM file
:param stlname: name of STL file
:type stlname: string
:param femname: name of FEM file
:type femname: string

	
smuthi.linearsystem.tmatrix.nfmds.stlmanager.readstl(stlname)

	Reads surface information from STL file
:param stlname: name of STL file
:type stlname: string

	Returns

	A list of dictionaries with information about faces of scatterer geometry.

	
smuthi.linearsystem.tmatrix.nfmds.stlmanager.writefem(femname, surfaces)

	Writes information about particle geometry to FEM file.
:param femname: name of FEM file
:type femname: string
:param surfaces: information about faces of scatterer geometry
:type surfaces: list

The smuthi.postprocessing package

postprocessing

postprocessing.far_field

Manage post processing steps to evaluate the scattered far field

	
class smuthi.postprocessing.far_field.FarField(polar_angles='default', azimuthal_angles='default', angular_resolution=None, signal_type='intensity', reference_point=None)

	Represent the far field amplitude and far field intensity of an
electromagnetic field.

The electric field amplitude \(\mathbf{A}(\theta,\phi)\) is defined by

\[\mathbf{E}(\mathbf{r}) \approx \frac{e^{ikr}}{-ikr} \mathbf{A}(\theta,\phi)\]

for \(kr\rightarrow\infty\), compare equation (3.10) of Bohren and Huffman’s
textbook on light scattering.

In the above, \(\mathbf{A}(\theta,\phi)\) is a complex, vector valued
function of polar and azimuthal angle. It contains information on the amplitude
and phase of the scattered electric field in far field domain.

The intensity \(I_{\Omega,j}(\beta, \alpha)\) is defined by

\[P = \sum_{j=1}^2 \iint \mathrm{d}^2 \Omega \, I_{\Omega,j}(\beta, \alpha),\]

where \(P\) is the radiative power, \(j\) indicates the polarization and
\(\mathrm{d}^2 \Omega = \mathrm{d}\alpha \sin\beta \mathrm{d}\beta\)
denotes the infinitesimal solid angle.

	Parameters

	
	polar_angles (numpy.ndarray) – array of polar angles for plane wave expansions. If ‘default’, use
smuthi.fields.default_polar_angles

	azimuthal_angles (ndarray or str) – array of azimuthal angles for plane wave expansions. If ‘default’, use
smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	signal_type (str) – Use this field to describe the physical meaning of the power related signal (e.g., ‘intensity’ for standard power flux far fields).

	reference_point (list or tuple) – [x, y, z]-coordinates of point relative to which the far field is defined

	
alpha_grid()

	
	Returns

	Meshgrid with \(\alpha\) values.

	
append(other)

	Combine two FarField objects with disjoint angular ranges. The other far field is appended to this one.

	Parameters

	other (FarField) – far field to append to this one.

	
azimuthal_integral()

	Far field intensity as a function of the polar angle cosine only.

\[P = \sum_{j=1}^2 \int \mathrm{d} \cos\beta \, I_{\cos\beta,j}(\beta),\]

with

\[I_{\beta,j}(\beta) = \int \mathrm{d} \alpha \, I_j(\beta, \alpha),\]

	Returns

	\(I_{\cos\beta,j}(\beta)\) as numpy ndarray. First index is polarization, second is polar angle.

	
azimuthal_integral_times_sin_beta()

	Far field intensity as a function of polar angle only.

\[P = \sum_{j=1}^2 \int \mathrm{d} \beta \, I_{\beta,j}(\beta),\]

with

\[I_{\beta,j}(\beta) = \int \mathrm{d} \alpha \, \sin\beta I_j(\beta, \alpha),\]

	Returns

	\(I_{\beta,j}(\beta)\) as numpy ndarray. First index is polarization, second is polar angle.

	
beta_grid()

	
	Returns

	Meshgrid with \(\beta\) values.

	
bottom()

	Split far field into top and bottom part.

	Returns

	FarField object with only the intensity for bottom hemisphere (\(\beta\geq\pi/2\))

	
electric_field_amplitude()

	Evaluate electric field amplitude vector

	Returns

	Tuple of (A_x, A_y, A_z) numpy.ndarray objects with the Cartesian
coordinates of complex electric field amplitude.

	
integral()

	Integrate intensity to obtain total power \(P\).

	Returns

	\(P_j\) as numpy 1D-array with length 2, the index referring to polarization.

	
top()

	Split far field into top and bottom part.

	Returns

	FarField object with only the intensity for top hemisphere (\(\beta\leq\pi/2\))

	
smuthi.postprocessing.far_field.extinction_cross_section(simulation=None, initial_field=None, particle_list=None, layer_system=None, only_l=None, only_m=None, only_pol=None, only_tau=None, extinction_direction='both')

	Evaluate the extinction cross section.

	Parameters

	
	simulation (smuthi.Simulation.simulation) – Simulation object (optional)

	initial_field (smuthi.initial_field.PlaneWave) – Plane wave object (optional)

	particle_list (list) – List of smuthi.particles.Particle objects (optional)

	layer_system (smuthi.layers.LayerSystem) – Representing the stratified medium

	only_pol (int) – if set to 0 or 1, only this plane wave polarization (0=TE, 1=TM) is considered

	only_tau (int) – if set to 0 or 1, only this spherical vector wave polarization (0 — magnetic, 1 — electric) is
considered

	only_l (int) – if set to positive number, only this multipole degree is considered

	only_m (int) – if set non-negative number, only this multipole order is considered

	extinction_direction (string) – if set to ‘both’: return full excinction,
if to ‘reflection’: extinction of reflected wave,
if to ‘transmission’: extinction of transmitted wave.
See section on Extinction cross section for details.

	Returns

	Extinction cross section.

	
smuthi.postprocessing.far_field.pwe_to_ff_conversion(vacuum_wavelength, plane_wave_expansion)

	Compute the far field of a plane wave expansion object.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units.

	plane_wave_expansion (PlaneWaveExpansion) – Plane wave expansion to convert into far field object.

	Returns

	A FarField object containing the far field intensity.

	
smuthi.postprocessing.far_field.scattered_far_field(vacuum_wavelength, particle_list, layer_system, polar_angles='default', azimuthal_angles='default', angular_resolution=None, reference_point=None)

	Evaluate the scattered far field.

	Parameters

	
	vacuum_wavelength (float) – in length units

	particle_list (list) – list of smuthi.Particle objects

	layer_system (smuthi.layers.LayerSystem) – represents the stratified medium

	polar_angles (numpy.ndarray or str) – polar angles values (radian).
if ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – azimuthal angle values (radian)
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	reference_point (list or tuple) – If set to a value other than None, the far field
will be calculated with this as its reference point.

	Returns

	A smuthi.field_expansion.FarField object of the scattered field.

	
smuthi.postprocessing.far_field.scattering_cross_section(initial_field, particle_list, layer_system, polar_angles='default', azimuthal_angles='default', angular_resolution=None)

	Evaluate and display the differential scattering cross section as a function of solid angle.

	Parameters

	
	initial_field (smuthi.initial.PlaneWave) – Initial Plane wave

	particle_list (list) – scattering particles

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	polar_angles (numpy.ndarray or str) – polar angles values (radian).
if ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – azimuthal angle values (radian)
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	Returns

	A smuthi.field_expansion.FarField object.

	
smuthi.postprocessing.far_field.total_far_field(initial_field, particle_list, layer_system, polar_angles='default', azimuthal_angles='default', angular_resolution=None, reference_point=None)

	Evaluate the total far field, the initial far field and the scattered far field. Cannot be used if initial field
is a plane wave.

	Parameters

	
	initial_field (smuthi.initial_field.InitialField) – represents the initial field

	particle_list (list) – list of smuthi.Particle objects

	layer_system (smuthi.layers.LayerSystem) – represents the stratified medium

	polar_angles (numpy.ndarray or str) – polar angles values (radian).
if ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – azimuthal angle values (radian)
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	reference_point (list or tuple) – If set to a value other than None, the far field
will be calculated with this as its reference point.

	Returns

	A tuple of three smuthi.field_expansion.FarField objects for total, initial and scattered far field. Mind that the scattered far field
has no physical meaning and is for illustration purposes only.

	
smuthi.postprocessing.far_field.total_scattering_cross_section(simulation=None, initial_field=None, particle_list=None, layer_system=None, polar_angles='default', azimuthal_angles='default', angular_resolution=None)

	Evaluate the total scattering cross section.

	Parameters

	
	simulation (smuthi.Simulation.simulation) – Simulation object (optional)

	initial_field (smuthi.initial_field.PlaneWave) – Initial Plane wave (optional)

	particle_list (list) – scattering particles (optional)

	layer_system (smuthi.layers.LayerSystem) – stratified medium (optional)

	polar_angles (numpy.ndarray or str) – polar angles values (radian, default None).
If None, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – azimuthal angle values (radian, default None).
If None, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	Returns

	A tuple of smuthi.field_expansion.FarField objects, one for forward scattering (i.e., into the top hemisphere) and one for backward
scattering (bottom hemisphere).

postprocessing.graphical_output

Functions to generate plots and animations.

	
smuthi.postprocessing.graphical_output.compute_near_field(simulation=None, X=None, Y=None, Z=None, type='scatt', chunksize=None, k_parallel='default', azimuthal_angles='default', angular_resolution=None)

	Compute a certain component of the electric near field

	
smuthi.postprocessing.graphical_output.plot_layer_interfaces(dim1min, dim1max, layer_system)

	Add lines to plot to display layer system interfaces

	Parameters

	
	dim1min (float) – From what x-value plot line

	dim1max (float) – To what x-value plot line

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	
smuthi.postprocessing.graphical_output.plot_particles(xmin, xmax, ymin, ymax, zmin, zmax, particle_list, draw_circumscribing_sphere, fill_particle=True)

	Add circles, ellipses and rectangles to plot to display spheres, spheroids and cylinders.

	Parameters

	
	xmin (float) – Minimal x-value of plot

	xmax (float) – Maximal x-value of plot

	ymin (float) – Minimal y-value of plot

	ymax (float) – Maximal y-value of plot

	zmin (float) – Minimal z-value of plot

	zmax (float) – Maximal z-value of plot

	particle_list (list) – List of smuthi.particles.Particle objects

	draw_circumscribing_sphere (bool) – If true (default), draw a circle indicating the circumscribing sphere of
particles.

	fill_particle (bool) – If true, draw opaque particles.

	
smuthi.postprocessing.graphical_output.show_far_field(far_field, show_plots=True, show_opts=[{'label': 'far_field'}], save_plots=False, save_opts=None, save_data=False, data_format='hdf5', outputdir='.', flip_downward=True, split=True, log_scale=False)

	Display and export the far field.

	Parameters

	
	far_field (smuthi.field_expansion.FarField) – Far-field object to show and export

	show_plots (bool) – Display plots if True

	show_opts (dict list) – List of dictionaries containing options to be passed to pcolormesh for plotting.
If save_plots=True, a 1:1 correspondence between show_opts and save_opts dictionaries
is assumed. For simplicity, one can also provide a single show_opts entry that will
be applied to all save_opts.
The following keys are available (see matplotlib.pyplot.pcolormesh documentation):
‘alpha’ (None)
‘cmap’ (‘inferno’)
‘norm’ (None), is set to matplotlib.colors.LogNorm() if log_scale is True
‘vmin’ (None), applies only to 2D plots
‘vmax’ (None), applies only to 2D plots
‘shading’ (‘nearest’), applies only to 2D plots. ‘gouraud’ is also available
‘linewidth’ (None), applies only to 1D plots
‘linestyle’ (None), applies only to 1D plots
‘marker’ (None), applies only to 1D plots
An optional extra key called ‘label’ of type string is shown in the plot title
and appended to the associated file if save_plots is True
Finally, an optional ‘figsize’ key is available to set the width and height of
the figure window (see matplotlib.pyplot.figure documentation)

	save_plots (bool) – If True, plots are exported to file.

	save_opts (dict list) – List of dictionaries containing options to be passed to savefig.
A 1:1 correspondence between save_opts and show_opts dictionaries is assumed. For
simplicity, one can also provide a single save_opts entry that will be applied to
all show_opts.
The following keys are made available (see matplotlib.pyplot.savefig documentation):
‘dpi’ (None)
‘orientation’ (None)
‘format’ (‘png’), also available: eps, jpeg, jpg, pdf, ps, svg, tif, tiff …
‘transparent’ (False)
‘bbox_inches’ (‘tight’)
‘pad_inches’ (0.1)

	save_data (bool) – If True, raw data are exported to file

	data_format (str) – Output data format string, ‘hdf5’ and ‘ascii’ formats are available

	outputdir (str) – Path to the directory where files are to be saved

	flip_downward (bool) – If True, represent downward directions as 0-90 deg instead of 90-180

	split (bool) – If True, show two different plots for upward and downward directions

	log_scale (bool) – If True, set a logarithmic scale

	
smuthi.postprocessing.graphical_output.show_near_field(simulation=None, quantities_to_plot=None, show_plots=True, show_opts=None, save_plots=False, save_opts=None, save_data=False, data_format='hdf5', outputdir='.', xmin=0, xmax=0, ymin=0, ymax=0, zmin=0, zmax=0, resolution_step=25, k_parallel='default', azimuthal_angles='default', angular_resolution=None, draw_circumscribing_sphere=True, show_internal_field=False)

	Plot the electric near field along a plane. To plot along the xy-plane, specify zmin=zmax and so on.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	quantities_to_plot – List of strings that specify what to plot. Select from ‘E_x’, ‘E_y’, ‘E_z’, ‘norm(E)’
The list may contain one or more of the following strings:

’E_x’ real part of x-component of complex total electric field
‘E_y’ real part of y-component of complex total electric field
‘E_z’ real part of z-component of complex total electric field
‘norm(E)’ norm of complex total electric field

’E_scat_x’ real part of x-component of complex scattered electric field
‘E_scat_y’ real part of y-component of complex scattered electric field
‘E_scat_z’ real part of z-component of complex scattered electric field
‘norm(E_scat)’ norm of complex scattered electric field

’E_init_x’ real part of x-component of complex initial electric field
‘E_init_y’ real part of y-component of complex initial electric field
‘E_init_z’ real part of z-component of complex initial electric field
‘norm(E_init)’ norm of complex initial electric field

	show_plots (logical) – If True, plots are shown

	show_opts (dict list) – List of dictionaries containing options to be passed to imshow for plotting.
For each entry in quantities_to_plot, all show_opts dictionaries will be applied.
If save_plots=True, a 1:1 correspondence between show_opts and save_opts dictionaries
is assumed. For simplicity, one can also provide a single show_opts entry that will
be applied to all save_opts.
The following keys are made available (see matplotlib.pyplot.imshow documentation):
‘cmap’ defaults to ‘inferno’ for norm quantities and ‘RdYlBu’ otherwise
‘norm’ (None). If a norm is provided, its vmin and vmax take precedence
‘aspect’ (‘equal’)
‘interpolation’ (None), also available: bilinear, bicubic, spline16, quadric, …
‘alpha’ (None)
‘vmin’ (None), will be set to 0 for norm quantities and -vmax otherwise
‘vmax’ initialized with the max of the quantity to plot
‘origin’ (‘lower’)
‘extent’ calculated automatically based on plotting coordinate limits
An optional extra key called ‘label’ of type string is shown in the plot title
and appended to the associated file if save_plots is True
Finally, an optional ‘figsize’ key is available to set the width and height of
the figure window (see matplotlib.pyplot.figure documentation)

	save_plots (logical) – If True, plots are exported to file.

	save_opts (dict list) – List of dictionaries containing options to be passed to savefig.
For each entry in quantities_to_plot, all save_opts dictionaries will be applied.
A 1:1 correspondence between save_opts and show_opts dictionaries is assumed. For
simplicity, one can also provide a single save_opts entry that will be applied to
all show_opts.
The following keys are made available (see matplotlib.pyplot.savefig documentation):
‘dpi’ (None)
‘orientation’ (None)
‘format’ (‘png’), also available: eps, jpeg, jpg, pdf, ps, svg, tif, tiff …
‘transparent’ (False)
‘bbox_inches’ (‘tight’)
‘pad_inches’ (0.1)
Passing ‘gif’ as one of the format values will result in an animation if the
quantity to plot is of non-norm type

	save_data (logical) – If True, raw data are exported to file

	data_format (str) – Output data format string, ‘hdf5’ and ‘ascii’ formats are available

	outputdir (str) – Path to directory where to save the export files

	xmin (float) – Plot from that x (length unit)

	xmax (float) – Plot up to that x (length unit)

	ymin (float) – Plot from that y (length unit)

	ymax (float) – Plot up to that y (length unit)

	zmin (float) – Plot from that z (length unit)

	zmax (float) – Plot up to that z (length unit)

	resolution_step (float) – Compute the field with that spatial resolution (length unit,
distance between computed points), can be a tuple for [resx, resy, resz]

	k_parallel (numpy.ndarray or str) – in-plane wavenumbers for the plane wave expansion
if ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	azimuthal_angles (numpy.ndarray or str) – azimuthal angles for the plane wave expansion
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	draw_circumscribing_sphere (bool) – If true (default), draw a circle indicating the circumscribing
sphere of particles.

	show_internal_field (bool) – If true, compute also the field inside the particles (only for spheres)

	
smuthi.postprocessing.graphical_output.show_scattered_far_field(simulation, show_plots=True, show_opts=[{'label': 'scattered_far_field'}], save_plots=False, save_opts=None, save_data=False, data_format='hdf5', outputdir='.', flip_downward=True, split=True, log_scale=False, polar_angles='default', azimuthal_angles='default', angular_resolution=None)

	Display and export the scattered far field.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	show_plots (bool) – Display plots if True

	show_opts (dict list) – List of dictionaries containing options to be passed to pcolormesh for plotting.
If save_plots=True, a 1:1 correspondence between show_opts and save_opts dictionaries
is assumed. For simplicity, one can also provide a single show_opts entry that will
be applied to all save_opts.
The following keys are available (see matplotlib.pyplot.pcolormesh documentation):
‘alpha’ (None)
‘cmap’ (‘inferno’)
‘norm’ (None), is set to matplotlib.colors.LogNorm() if log_scale is True
‘vmin’ (None), applies only to 2D plots
‘vmax’ (None), applies only to 2D plots
‘shading’ (‘nearest’), applies only to 2D plots. ‘gouraud’ is also available
‘linewidth’ (None), applies only to 1D plots
‘linestyle’ (None), applies only to 1D plots
‘marker’ (None), applies only to 1D plots
An optional extra key called ‘label’ of type string is shown in the plot title
and appended to the associated file if save_plots is True

	save_plots (bool) – If True, plots are exported to file.

	save_opts (dict list) – List of dictionaries containing options to be passed to savefig.
A 1:1 correspondence between save_opts and show_opts dictionaries is assumed. For
simplicity, one can also provide a single save_opts entry that will be applied to
all show_opts.
The following keys are made available (see matplotlib.pyplot.savefig documentation):
‘dpi’ (None)
‘orientation’ (None)
‘format’ (‘png’), also available: eps, jpeg, jpg, pdf, ps, svg, tif, tiff …
‘transparent’ (False)
‘bbox_inches’ (‘tight’)
‘pad_inches’ (0.1)

	save_data (bool) – If True, raw data are exported to file

	data_format (str) – Output data format string, ‘hdf5’ and ‘ascii’ formats are available

	outputdir (str) – Path to the directory where files are to be saved

	flip_downward (bool) – If True, represent downward directions as 0-90 deg instead of 90-180

	split (bool) – If True, show two different plots for upward and downward directions

	log_scale (bool) – If True, set a logarithmic scale

	polar_angles (numpy.ndarray or str) – Polar angles values (radian).
If ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – Azimuthal angle values (radian).
If ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	
smuthi.postprocessing.graphical_output.show_scattering_cross_section(simulation, show_plots=True, show_opts=[{'label': 'scattering_cross_section'}], save_plots=False, save_opts=None, save_data=False, data_format='hdf5', outputdir='.', flip_downward=True, split=True, log_scale=False, polar_angles='default', azimuthal_angles='default', angular_resolution=None)

	Display and export the differential scattering cross section.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	show_plots (bool) – Display plots if True

	show_opts (dict list) – List of dictionaries containing options to be passed to pcolormesh for plotting.
If save_plots=True, a 1:1 correspondence between show_opts and save_opts dictionaries
is assumed. For simplicity, one can also provide a single show_opts entry that will
be applied to all save_opts.
The following keys are available (see matplotlib.pyplot.pcolormesh documentation):
‘alpha’ (None)
‘cmap’ (‘inferno’)
‘norm’ (None), is set to matplotlib.colors.LogNorm() if log_scale is True
‘vmin’ (None), applies only to 2D plots
‘vmax’ (None), applies only to 2D plots
‘shading’ (‘nearest’), applies only to 2D plots. ‘gouraud’ is also available
‘linewidth’ (None), applies only to 1D plots
‘linestyle’ (None), applies only to 1D plots
‘marker’ (None), applies only to 1D plots
An optional extra key called ‘label’ of type string is shown in the plot title
and appended to the associated file if save_plots is True

	save_plots (bool) – If True, plots are exported to file.

	save_opts (dict list) – List of dictionaries containing options to be passed to savefig.
A 1:1 correspondence between save_opts and show_opts dictionaries is assumed. For
simplicity, one can also provide a single save_opts entry that will be applied to
all show_opts.
The following keys are made available (see matplotlib.pyplot.savefig documentation):
‘dpi’ (None)
‘orientation’ (None)
‘format’ (‘png’), also available: eps, jpeg, jpg, pdf, ps, svg, tif, tiff …
‘transparent’ (False)
‘bbox_inches’ (‘tight’)
‘pad_inches’ (0.1)

	save_data (bool) – If True, raw data are exported to file

	data_format (str) – Output data format string, ‘hdf5’ and ‘ascii’ formats are available

	outputdir (str) – Path to the directory where files are to be saved

	flip_downward (bool) – If True, represent downward directions as 0-90 deg instead of 90-180

	split (bool) – If True, show two different plots for upward and downward directions

	log_scale (bool) – If True, set a logarithmic scale

	polar_angles (numpy.ndarray or str) – Polar angles values (radian).
If ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – Azimuthal angle values (radian).
If ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	
smuthi.postprocessing.graphical_output.show_total_far_field(simulation, show_plots=True, show_opts=[{'label': 'total_far_field'}], save_plots=False, save_opts=None, save_data=False, data_format='hdf5', outputdir='.', flip_downward=True, split=True, log_scale=False, polar_angles='default', azimuthal_angles='default', angular_resolution=None)

	Display and export the total far field. This function cannot be used if the inital field is a plane wave.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	show_plots (bool) – Display plots if True

	show_opts (dict list) – List of dictionaries containing options to be passed to pcolormesh for plotting.
If save_plots=True, a 1:1 correspondence between show_opts and save_opts dictionaries
is assumed. For simplicity, one can also provide a single show_opts entry that will
be applied to all save_opts.
The following keys are available (see matplotlib.pyplot.pcolormesh documentation):
‘alpha’ (None)
‘cmap’ (‘inferno’)
‘norm’ (None), is set to matplotlib.colors.LogNorm() if log_scale is True
‘vmin’ (None), applies only to 2D plots
‘vmax’ (None), applies only to 2D plots
‘shading’ (‘nearest’), applies only to 2D plots. ‘gouraud’ is also available
‘linewidth’ (None), applies only to 1D plots
‘linestyle’ (None), applies only to 1D plots
‘marker’ (None), applies only to 1D plots
An optional extra key called ‘label’ of type string is shown in the plot title
and appended to the associated file if save_plots is True

	save_plots (bool) – If True, plots are exported to file.

	save_opts (dict list) – List of dictionaries containing options to be passed to savefig.
A 1:1 correspondence between save_opts and show_opts dictionaries is assumed. For
simplicity, one can also provide a single save_opts entry that will be applied to
all show_opts.
The following keys are made available (see matplotlib.pyplot.savefig documentation):
‘dpi’ (None)
‘orientation’ (None)
‘format’ (‘png’), also available: eps, jpeg, jpg, pdf, ps, svg, tif, tiff …
‘transparent’ (False)
‘bbox_inches’ (‘tight’)
‘pad_inches’ (0.1)

	save_data (bool) – If True, raw data are exported to file

	data_format (str) – Output data format string, ‘hdf5’ and ‘ascii’ formats are available

	outputdir (str) – Path to the directory where files are to be saved

	flip_downward (bool) – If True, represent downward directions as 0-90 deg instead of 90-180

	split (bool) – If True, show two different plots for upward and downward directions

	log_scale (bool) – If True, set a logarithmic scale

	polar_angles (numpy.ndarray or str) – Polar angles values (radian).
If ‘default’, use smuthi.fields.default_polar_angles

	azimuthal_angles (numpy.ndarray or str) – Azimuthal angle values (radian).
If ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

postprocessing.internal_field

Manage post processing steps to evaluate the electric field inside a sphere

	
smuthi.postprocessing.internal_field.internal_field_piecewise_expansion(vacuum_wavelength, particle_list, layer_system)

	Compute a piecewise field expansion of the internal field of spheres.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength

	particle_list (list) – list of smuthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	Returns

	internal field as smuthi.field_expansion.PiecewiseFieldExpansion object

postprocessing.scattered_field

Manage post processing steps to evaluate the scattered electric field

	
smuthi.postprocessing.scattered_field.evaluate_scattered_field_stat_phase_approx(x, y, z, vacuum_wavelength, particle_list, layer_system)

	Evaluate the scattered electric field for N particles on a substrate. The substrate reflection is evaluated
by means of the stationary phase approximation, as presented in
“A quick way to approximate a Sommerfeld-Weyl_type Sommerfeld integral” by W.C. Chew (1988).

See also the technical note “Usage of the stationary phase approximation in SMUTHI” by A. Egel (2020)

The stationary phase approximation is expected to yield good results for field points far away from the particles.

Note: This function assumes that the particles are located in the upper layer of a two-layer system (particles on
substrate). For other cases, this function does not apply.
**

	Parameters

	
	x (float or numpy.ndarray) – x-coordinates of query points

	y (float or numpy.ndarray) – y-coordinates of query points

	z (float or numpy.ndarray) – z-coordinates of query points

	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	particle_list (list) – List of Particle objects

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	Returns

	Tuple of (E_x, E_y, E_z) numpy.ndarray objects with the Cartesian coordinates of complex electric field.

	
smuthi.postprocessing.scattered_field.scattered_field_piecewise_expansion(vacuum_wavelength, particle_list, layer_system, k_parallel='default', azimuthal_angles='default', angular_resolution=None, layer_numbers=None)

	Compute a piecewise field expansion of the scattered field.

	Parameters

	
	vacuum_wavelength (float) – vacuum wavelength

	particle_list (list) – list of smuthi.particles.Particle objects

	layer_system (smuthi.layers.LayerSystem) – stratified medium

	k_parallel (numpy.ndarray or str) – in-plane wavenumbers array.
if ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	azimuthal_angles (numpy.ndarray or str) – azimuthal angles array
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular
resolution over the default angular range

	layer_numbers (list) – if specified, append only plane wave expansions for these layers

	Returns

	scattered field as smuthi.field_expansion.PiecewiseFieldExpansion object

	
smuthi.postprocessing.scattered_field.scattered_field_pwe(vacuum_wavelength, particle_list, layer_system, layer_number, k_parallel='default', azimuthal_angles='default', angular_resolution=None, include_direct=True, include_layer_response=True, only_l=None, only_m=None, only_pol=None, only_tau=None)

	Calculate the plane wave expansion of the scattered field of a set of particles.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength (length unit)

	particle_list (list) – List of Particle objects

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	layer_number (int) – Layer number in which the plane wave expansion should be valid

	k_parallel (numpy.ndarray or str) – in-plane wavenumbers array.
if ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	azimuthal_angles (numpy.ndarray or str) – azimuthal angles array
if ‘default’, use smuthi.fields.default_azimuthal_angles

	angular_resolution (float) – If provided, angular arrays are generated with this angular resolution
over the default angular range

	include_direct (bool) – If True, include the direct scattered field

	include_layer_response (bool) – If True, include the layer system response

	only_pol (int) – if set to 0 or 1, only this plane wave polarization (0=TE, 1=TM) is considered

	only_tau (int) – if set to 0 or 1, only this spherical vector wave polarization (0 — magnetic, 1 — electric) is
considered

	only_l (int) – if set to positive number, only this multipole degree is considered

	only_m (int) – if set to non-negative number, only this multipole order is considered

	Returns

	A tuple of PlaneWaveExpansion objects for upgoing and downgoing waves.

postprocessing.power_flux

Manage post processing steps to evaluate power flux

	
smuthi.postprocessing.power_flux.power_flux_through_zplane(vacuum_wavelength, z, upgoing_pwe=None, downgoing_pwe=None)

	Evaluate time averaged power flux though a plane of z=const.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units.

	z (float) – plane height z

	upgoing_pwe (PlaneWaveExpansion) – of kind “upgoing”

	downgoing_pwe (PlaneWaveExpansion) – of kind “downgoing”

	Returns

	Time averaged energy flux.

The smuthi.utility package

utility

utility.automatic_parameter_selection

Functions that assist the user in the choice of suitable numerical simulation parameters.

	
smuthi.utility.automatic_parameter_selection.converge_angular_resolution(simulation, detector='extinction cross section', tolerance=0.001, max_iter=30, ax=None)

	Find a suitable discretization step size for the default angular arrays used for plane wave expansions.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	max_iter (int) – Break convergence loops after that number of iterations, even if
no convergence has been achieved.

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	Detector value for converged settings.

	
smuthi.utility.automatic_parameter_selection.converge_l_max(simulation, detector='extinction cross section', tolerance=0.001, tolerance_steps=2, max_iter=100, start_from_1=True, ax=None)

	Find suitable multipole cutoff degree l_max for a given particle and simulation. The routine starts with the
current l_max of the particle. The value of l_max is successively incremented in a loop until the resulting
relative change in the detector value is smaller than the specified tolerance. The method updates the input
particle object with the l_max value for which convergence has been achieved.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object containing the particle

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	tolerance_steps (int) – Number of consecutive steps at which the tolerance must be met
during multipole truncation convergence. Default: 2

	max_iter (int) – Break convergence loop after that number of iterations, even if
no convergence has been achieved.

	start_from_1 (logical) – If true (default), start from l_max=1. Otherwise, start from the
current particle l_max.

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	
	A 3-tuple containing

	
	detector value of converged or break-off parameter settings.

	series of lmax values

	the detector values for the given lmax values

	
smuthi.utility.automatic_parameter_selection.converge_m_max(simulation, detector='extinction cross section', tolerance=0.001, target_value=None, ax=None)

	Find suitable multipole cutoff order m_max for a given particle and simulation. The routine starts with the
current l_max of the particle, i.e. with m_max=l_max. The value of m_max is successively decremented in a loop
until the resulting relative change in the detector value is larger than the specified tolerance. The method updates
the input particle object with the so determined m_max.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object containing the particle

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	max_iter (int) – Break convergence loop after that number of iterations, even if
no convergence has been achieved.

	target_value (float) – If available (typically from preceding neff selection procedure),
use as target detector value

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	Detector value of converged or break-off parameter settings.

	
smuthi.utility.automatic_parameter_selection.converge_multipole_cutoff(simulation, detector='extinction cross section', tolerance=0.001, tolerance_steps=2, max_iter=100, current_value=None, l_max_list=None, detector_value_list=None, converge_m=True, ax=None)

	Find suitable multipole cutoff degree l_max and order m_max for all particles in a given simulation object.
The method updates the input simulation object with the so determined multipole truncation values.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value

	tolerance (float) – Relative tolerance for the detector value change

	tolerance_steps (int) – Number of consecutive steps at which the tolerance must be met
during multipole truncation convergence. Default: 2

	max_iter (int) – Break convergence loops after that number of iterations, even if
no convergence has been achieved

	current_value (float) – If specified, skip l_max run and use this value for the
resulting detector value.
Otherwise, start with l_max run.

	l_max_list (list) – If current_value was specified, the l_max run is skipped.
Then, this list is returned as the second item in the returned tuple.

	detector_value_list (list) – If current_value was specified, the l_max run is skipped.
Then, this list is returned as the third item in the returned tuple.

	converge_m (logical) – If false, only converge l_max, but keep m_max=l_max. Default
is true

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	
	A 3-tuple containing

	
	detector value of converged or break-off parameter settings.

	series of lmax values

	the detector values for the given lmax values

	
smuthi.utility.automatic_parameter_selection.converge_neff_max(simulation, detector='extinction cross section', tolerance=0.001, tolerance_factor=0.1, tolerance_steps=2, max_iter=30, neff_imag=0.01, neff_resolution=0.002, neff_max_increment=0.5, neff_max_offset=0, converge_lm=True, ax=None)

	Find a suitable truncation value for the multiple scattering Sommerfeld integral contour and update the
simulation object accordingly.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	tolerance_factor (float) – During neff selection, a smaller tolerance should be allowed to
avoid fluctuations of the order of ~tolerance which would
compromise convergence. Default: 0.1

	tolerance_steps (int) – Number of consecutive steps at which the tolerance must be met
during multipole truncation convergence. Default: 2

	max_iter (int) – Break convergence loops after that number of iterations, even if
no convergence has been achieved.

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).

	neff_resolution (float) – Discretization of the contour (in terms of eff. refractive
index).

	neff_max_increment (float) – Increment the neff_max parameter with that step size

	neff_max_offset (float) – Start neff_max selection from the last estimated singularity
location plus this value (in terms of effective refractive index)

	converge_lm (logical) – If set to true, update multipole truncation during each step
(this takes longer time, but is necessary for critical use cases
like flat particles on a substrate)

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	Detector value for converged settings.

	
smuthi.utility.automatic_parameter_selection.converge_neff_resolution(simulation, detector='extinction cross section', tolerance=0.001, max_iter=30, neff_imag=0.01, neff_max=None, neff_resolution=0.01, ax=None)

	Find a suitable discretization step size for the multiple scattering Sommerfeld integral contour and update
the simulation object accordingly.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	max_iter (int) – Break convergence loops after that number of iterations, even if
no convergence has been achieved.

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).

	neff_max (float) – Truncation value of contour (in terms of effective refractive
index).

	neff_resolution (float) – Discretization of the contour (in terms of eff. refractive
index) - start value for iteration

	ax (np.array of AxesSubplot) – Array of AxesSubplots where to live-plot convergence output

	Returns

	Detector value for converged settings.

	
smuthi.utility.automatic_parameter_selection.evaluate(simulation, detector)

	Run a simulation and evaluate the detector.
:param simulation: simulation object
:type simulation: smuthi.simulation.Simulation
:param detector: Specify a method that accepts a simulation as input and returns

a float. Otherwise, type “extinction cross section” to use the
extinction cross section as a detector.

	Returns

	The detector value (float)

	
smuthi.utility.automatic_parameter_selection.select_numerical_parameters(simulation, detector='extinction cross section', tolerance=0.001, tolerance_factor=0.1, tolerance_steps=2, max_iter=30, neff_imag=0.01, neff_resolution=0.01, select_neff_max=True, neff_max_increment=0.5, neff_max_offset=0, neff_max=None, select_neff_resolution=True, select_angular_resolution=False, select_multipole_cutoff=True, relative_convergence=True, show_plot=True)

	Trigger automatic selection routines for various numerical parameters.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object from which parameters are read and into which
results are stored.

	detector (function or string) – Function that accepts a simulation object and returns a detector
value the change of which is used to define convergence.
Alternatively, use “extinction cross section” (default) to have
the extinction cross section as the detector value.

	tolerance (float) – Relative tolerance for the detector value change.

	tolerance_factor (float) – During neff selection, a smaller tolerance should be allowed to
avoid fluctuations of the order of ~tolerance which would
compromise convergence. Default: 0.1

	tolerance_steps (int) – Number of consecutive steps at which the tolerance must be met
during multipole truncation convergence. Default: 2

	max_iter (int) – Break convergence loops after that number of iterations, even if
no convergence has been achieved.

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega)

	neff_resolution (float) – Discretization of the contour (in terms of eff. refractive
index) - if select_neff_resolution is true, this value will be
eventually overwritten. However, it is required in any case.
Default: 1e-2

	select_neff_max (logical) – If set to true (default), the Sommerfeld integral truncation
parameter neff_max is determined automatically with the help
of a Cauchy convergence criterion.

	neff_max_increment (float) – Only needed if select_neff_max is true.
Step size with which neff_max is incremented.

	neff_max_offset (float) – Only needed if select_neff_max is true.
Start n_eff selection from the last estimated singularity
location plus this value (in terms of effective refractive index)

	neff_max (float) – Only needed if select_neff_max is false.
Truncation value of contour (in terms of effective refractive
index).

	select_neff_resolution (logical) – If set to true (default), the Sommerfeld integral discretization
parameter neff_resolution is determined automatically with the
help of a Cauchy convergence criterion.

	select_angular_resolution (logical) – If set to true, the angular resolution step for the default polar
and azimuthal angles is determined automatically according to a
Cauchy convergenge criterion.

	select_multipole_cutoff (logical) – If set to true (default), the multipole expansion cutoff
parameters l_max and m_max are determined automatically with
the help of a Cauchy convergence criterion.

	relative_convergence (logical) – If set to true (default), the neff_max convergence and the
l_max and m_max convergence routine are performed in the
spirit of relative convergence, i.e., the multipole expansion
convergence is checked again for each value of the Sommerfeld
integral truncation. This takes more time, but is required at
least in the case of flat particles near interfaces.

	
smuthi.utility.automatic_parameter_selection.update_contour(simulation, neff_imag=0.005, neff_max=None, neff_max_offset=0.5, neff_resolution=0.002)

	Update the default k_parallel arrays in smuthi.fields with a newly constructed Sommerfeld integral
contour, and set the simulation object to use the default contour for particle coupling.

	Parameters

	
	simulation (smuthi.simulation.Simulation) – Simulation object

	neff_imag (float) – Extent of the contour into the negative imaginary direction
(in terms of effective refractive index, n_eff=kappa/omega).

	neff_max (float) – Truncation value of contour (in terms of effective refractive
index).

	neff_max_offset (float) – If no value for neff_max is specified, use the last estimated
singularity location plus this value (in terms of effective
refractive index).

	neff_resolution (float) – Discretization of the contour (in terms of effective refractive
index).

	
smuthi.utility.automatic_parameter_selection.update_lmax_mmax(simulation, l_max)

	Assign the same l_max and m_max = l_max to all particles in simulation

utility.cuda

	
smuthi.utility.cuda.enable_gpu(enable=True)

	Sets the use_gpu flag to enable/disable the use of CUDA kernels.

	Parameters

	enable (bool) – Set use_gpu flag to this value (default=True).

utility.logging

	
class smuthi.utility.logging.Logger(log_filename=None, log_to_file=True, log_to_terminal=True)

	Allows to prompt messages both to terminal and to log file simultaneously.
It also allows to print with indentation or to temporally mute the Logger.

	
fileno()

	

	
flush()

	

	
write(message)

	

	
class smuthi.utility.logging.LoggerIndented(indendatation=' ')

	

	
class smuthi.utility.logging.LoggerMuted

	
	
mute_logger = <smuthi.utility.logging.Logger object>

	

	
class smuthi.utility.logging.bcolors

	
	
BOLD = '\x1b[1m'

	

	
ENDC = '\x1b[0m'

	

	
FAIL = '\x1b[91m'

	

	
HEADER = '\x1b[95m'

	

	
OKBLUE = '\x1b[94m'

	

	
OKGREEN = '\x1b[92m'

	

	
UNDERLINE = '\x1b[4m'

	

	
WARNING = '\x1b[93m'

	

	
smuthi.utility.logging.write_blue(message)

	

	
smuthi.utility.logging.write_green(message)

	

	
smuthi.utility.logging.write_header(message)

	

	
smuthi.utility.logging.write_red(message)

	

utility.math

This module contains several mathematical functions.

	
smuthi.utility.math.dx_xh(n, x)

	Derivative of \(x h_n(x)\), where \(h_n(x)\) is the spherical Hankel function.

	Parameters

	
	n (int) – (n>0): Order of spherical Bessel function

	x (array, complex or float) – Argument for spherical Hankel function

	Returns

	Derivative \(\partial_x(x h_n(x))\) as array.

	
smuthi.utility.math.dx_xj(n, x)

	Derivative of \(x j_n(x)\), where \(j_n(x)\) is the spherical Bessel function.

	Parameters

	
	n (int) – (n>0): Order of spherical Bessel function

	x (array, complex or float) – Argument for spherical Bessel function

	Returns

	Derivative \(\partial_x(x j_n(x))\) as array.

	
smuthi.utility.math.inverse_vector_rotation(r, alpha=None, beta=None, gamma=None, euler_angles=None)

	

	
smuthi.utility.math.legendre_normalized(ct, st, lmax)

	Return the normalized associated Legendre function \(P_l^m(\cos\theta)\) and the angular functions
\(\pi_l^m(\cos \theta)\) and \(\tau_l^m(\cos \theta)\), as defined in
A. Doicu, T. Wriedt, and Y. A. Eremin: “Light Scattering by Systems of Particles”, Springer-Verlag, 2006 [https://doi.org/10.1007/978-3-540-33697-6].
Two arguments (ct and st) are passed such that the function is valid for general complex arguments, while the branch
cuts are defined by the user already in the definition of st.

	Parameters

	
	ct (ndarray) – cosine of theta (or kz/k)

	st (ndarray) – sine of theta (or kp/k), need to have same dimension as ct, and st**2+ct**2=1 is assumed

	lmax (int) – maximal multipole order

	Returns

	
	ndarray plm[l, m, *ct.shape] contains \(P_l^m(\cos \theta)\). The entries of the list have same dimension as ct (and st)

	ndarray pilm[l, m, *ct.shape] contains \(\pi_l^m(\cos \theta)\).

	ndarray taulm[l, m, *ct.shape] contains \(\tau_l^m(\cos \theta)\).

	
smuthi.utility.math.legendre_normalized_numbed

	

	
smuthi.utility.math.nb_wig3jj(jj_1, jj_2, jj_3, mm_1, mm_2, mm_3)

	

	
smuthi.utility.math.rotation_matrix(alpha=None, beta=None, gamma=None, euler_angles=None)

	

	
smuthi.utility.math.spherical_hankel(n, x)

	

	
smuthi.utility.math.vector_rotation(r, alpha=None, beta=None, gamma=None, euler_angles=None)

	

	
smuthi.utility.math.wigner_D(l, m, m_prime, alpha, beta, gamma, wdsympy=False)

	Computation of Wigner-D-functions for the rotation of a T-matrix

	Parameters

	
	l (int) – Degree \(l\) (1, …, lmax)

	m (int) – Order \(m\) (-min(l,mmax),…,min(l,mmax))

	m_prime (int) – Order \(m_prime\) (-min(l,mmax),…,min(l,mmax))

	alpha (float) – First Euler angle in rad

	beta (float) – Second Euler angle in rad

	gamma (float) – Third Euler angle in rad

	wdsympy (bool) – If True, Wigner-d-functions come from the sympy toolbox

	Returns

	single complex value of Wigner-D-function

	
smuthi.utility.math.wigner_d(l, m, m_prime, beta, wdsympy=False)

	Computation of Wigner-d-functions for the rotation of a T-matrix

	Parameters

	
	l (int) – Degree \(l\) (1, …, lmax)

	m (int) – Order \(m\) (-min(l,mmax),…,min(l,mmax))

	m_prime (int) – Order \(m_prime\) (-min(l,mmax),…,min(l,mmax))

	beta (float) – Second Euler angle in rad

	wdsympy (bool) – If True, Wigner-d-functions come from the sympy toolbox

	Returns

	real value of Wigner-d-function

utility.memoizing

Provide functionality to store intermediate results in lookup tables (memoize)

	
class smuthi.utility.memoizing.Memoize(fn)

	To be used as a decorator for functions that are memoized.

utility.optical_constants

Provide functionality to read optical constants in format provided by refractiveindex.info [https://refractiveindex.info/] website

	
smuthi.utility.optical_constants.read_refractive_index_from_yaml(filename, vacuum_wavelength, units='mkm', kind=1)

	Read optical constants in format provided by refractiveindex.info website.

	Parameters

	
	filename (str) – path and file name for yaml data
downloaded from refractiveindex.info

	vacuum_wavelength (float or np.array) – wavelengths where refractive
index data is needed

	units (str) – units for wavelength. currently, microns (‘mkm’ or ‘um’)
and nanometers (‘nm’) can be selected

	kind (int) – order of interpolation

	Returns

	A pair (or np.array of pairs) of wavelength and
corresponding refractive index (complex)

Literature

Main publication describing SMUTHI (if you use the software for a scientific publication, please cite this):

	[Egel et al. 2021]

	Amos Egel, Krzysztof M Czajkowski, Dominik Theobald, Konstantin Ladutenko, Alexey S Kuznetsov, Lorenzo Pattelli: “SMUTHI: A python package for the simulation of light scattering by multiple particles near or between planar interfaces”, Journal of Quantitative Spectroscopy and Radiative Transfer, 273, 2021, 107846, DOI: 10.1016/j.jqsrt.2021.107846 [https://arxiv.org/pdf/2105.04259]

Publications that describe the theory behind Smuthi:

	[Theobald 2017]

	Dominik Theobald, Amos Egel, Guillaume Gomard, Uli Lemmer: “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles.” Physical Review A 96.3 (2017): 033822. [https://arxiv.org/abs/1708.04808]

	[Egel 2018]

	Amos Egel: “Accurate optical simulation of disordered scattering layers for light extractionfrom organic light emitting diodes”, Dissertation, Karlsruhe (2018), DOI: 10.5445/IR/1000093961 [https://publikationen.bibliothek.kit.edu/1000093961/26467128]

	[Egel and Lemmer 2014]

	Amos Egel, Uli Lemmer: “Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs”, Journal of Quantitative Spectroscopy and Radiative Transfer, 148, 2014, 165-176,DOI: 10.1016/j.jqsrt.2014.06.022 [https://www.sciencedirect.com/science/article/pii/S0022407314002829]

	[Egel et al. 2016a]

	Amos Egel, Siegfried W. Kettlitz, Uli Lemmer. “Efficient evaluation of Sommerfeld integrals for the optical simulation of many scattering particles in planarly layered media.” JOSA A 33.4 (2016): 698-706. [https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-33-4-698]

	[Egel et al. 2016b]

	Amos Egel, Dominik Theobald, Yidenekachew Donie, Uli Lemmer, Guillaume Gomard, G: “Light scattering by oblate particles near planar interfaces: on the validity of the T-matrix approach.” Optics express 24.22 (2016): 25154-25168. [https://doi.org/10.1364/OE.24.025154]

	[Egel et al. 2017b]

	Egel, A., Eremin, Y., Wriedt, T., Theobald, D., Lemmer, U., & Gomard, G. (2017). Extending the applicability of the T-matrix method to light scattering by flat particles on a substrate via truncation of sommerfeld integrals. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 279-285. [https://arxiv.org/pdf/1708.05557.pdf]

This book describes the Null-Field Method with Discrete Sources (NFM-DS):

	[Doicu et al. 2006]

	Doicu, Adrian, Thomas Wriedt, and Yuri A. Eremin. Light scattering by systems of particles: null-field method with discrete sources: theory and programs. Vol. 124. Springer, 2006. [http://www.springer.com/us/book/9783540336969]

Other publications to which we refer in this user manual:

	[Wiscombe 1980]

	W.J. Wiscombe: “Improved Mie scattering algorithms”, Appl. Opt. 19, 1505-1509 (1980)

	[Neves 2012]

	Antonio A. R. Neves and Dario Pisignano: “Effect of finite terms on the truncation error of Mie series.” Optics letters 37.12 (2012): 2418-2420.

Publications that use Smuthi:

	[Egel et al. 2017a]

	Egel, A., Gomard, G., Kettlitz, S. W., & Lemmer, U. (2017). Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes. Journal of Optics, 19(2), 025605.

	[Theobald et al. 2017]

	Theobald, D., Egel, A., Gomard, G., & Lemmer, U. (2017). Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Physical Review A, 96(3), 033822.

	[Warren et al. 2020]

	Aran Warren, M. Alkaisi and C. Moore, “Design of 2D Plasmonic Diffraction Gratings for Sensing and Super-Resolution Imaging Applications,” 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 2020, pp. 1-6, doi: 10.1109/I2MTC43012.2020.9129161.

	[Theobald et al. 2020]

	Theobald, D., Yu, S., Gomard, G., & Lemmer, U. (2020). Design of Selective Reflectors Utilizing Multiple Scattering by Core–Shell Nanoparticles for Color Conversion Films. ACS Photonics.

	[Czajkowski et al. 2020]

	Czajkowski, Krzysztof M., Maria Bancerek, and Tomasz J. Antosiewicz. “Multipole analysis of substrate-supported dielectric nanoresonator arrays with T-matrix method.” arXiv preprint arXiv:2006.09137 (2020).

	[Pidgayko et al. 2020]

	Pidgayko, D. A., Sadrieva, Z. F., Ladutenko, K. S., & Bogdanov, A. A. (2020). Polarization-controlled selective excitation of Mie resonances of dielectric nanoparticle on a coated substrate. arXiv preprint arXiv:2011.06494.

	[Warren et al. 2021]

	Aran Warren, Maan M. Alkaisi, and Ciaran P. Moore. “Finite-size and disorder effects on 1D unipartite and bipartite surface lattice resonances”, Opt. Express 30, 3302-3315 (2022), DOI: 10.1364/OE.445414

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 smuthi	

 	
 	
 smuthi.fields	

 	
 	
 smuthi.fields.expansions	

 	
 	
 smuthi.fields.expansions_cuda	

 	
 	
 smuthi.fields.transformations	

 	
 	
 smuthi.fields.vector_wave_functions	

 	
 	
 smuthi.initial_field	

 	
 	
 smuthi.layers	

 	
 	
 smuthi.linearsystem	

 	
 	
 smuthi.linearsystem.linear_system	

 	
 	
 smuthi.linearsystem.linear_system_cuda	

 	
 	
 smuthi.linearsystem.particlecoupling	

 	
 	
 smuthi.linearsystem.particlecoupling.direct_coupling	

 	
 	
 smuthi.linearsystem.particlecoupling.layer_mediated_coupling	

 	
 	
 smuthi.linearsystem.particlecoupling.prepare_lookup	

 	
 	
 smuthi.linearsystem.particlecoupling.prepare_lookup_cuda	

 	
 	
 smuthi.linearsystem.tmatrix	

 	
 	
 smuthi.linearsystem.tmatrix.nfmds.indexconverter	

 	
 	
 smuthi.linearsystem.tmatrix.nfmds.stlmanager	

 	
 	
 smuthi.linearsystem.tmatrix.t_matrix	

 	
 	
 smuthi.particles	

 	
 	
 smuthi.postprocessing	

 	
 	
 smuthi.postprocessing.far_field	

 	
 	
 smuthi.postprocessing.graphical_output	

 	
 	
 smuthi.postprocessing.internal_field	

 	
 	
 smuthi.postprocessing.power_flux	

 	
 	
 smuthi.postprocessing.scattered_field	

 	
 	
 smuthi.simulation	

 	
 	
 smuthi.utility	

 	
 	
 smuthi.utility.automatic_parameter_selection	

 	
 	
 smuthi.utility.cuda	

 	
 	
 smuthi.utility.logging	

 	
 	
 smuthi.utility.math	

 	
 	
 smuthi.utility.memoizing	

 	
 	
 smuthi.utility.optical_constants	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	alpha_grid() (smuthi.postprocessing.far_field.FarField method)

 	angular_arrays() (in module smuthi.fields)

 	angular_frequency() (in module smuthi.fields)

 	(smuthi.initial_field.InitialField method)

 	AnisotropicSphere (class in smuthi.particles)

 	
 	append() (smuthi.initial_field.DipoleCollection method)

 	(smuthi.postprocessing.far_field.FarField method)

 	azimuthal_angle_grid() (smuthi.fields.expansions.PlaneWaveExpansion method)

 	azimuthal_integral() (smuthi.postprocessing.far_field.FarField method)

 	azimuthal_integral_times_sin_beta() (smuthi.postprocessing.far_field.FarField method)

B

 	
 	bcolors (class in smuthi.utility.logging)

 	beta_grid() (smuthi.postprocessing.far_field.FarField method)

 	block_rotation_matrix_D_svwf() (in module smuthi.fields.transformations)

 	
 	blocksize (in module smuthi.fields)

 	BOLD (smuthi.utility.logging.bcolors attribute)

 	bottom() (smuthi.postprocessing.far_field.FarField method)

 	branchpoint_correction() (in module smuthi.fields)

C

 	
 	check_dissipated_power_homogeneous_background() (smuthi.initial_field.DipoleSource method)

 	circumscribing_sphere_radius() (smuthi.particles.AnisotropicSphere method)

 	(smuthi.particles.CustomParticle method)

 	(smuthi.particles.FiniteCylinder method)

 	(smuthi.particles.Particle method)

 	(smuthi.particles.Sphere method)

 	(smuthi.particles.Spheroid method)

 	circumscribing_spheres_disjoint() (smuthi.simulation.Simulation method)

 	coefficients (smuthi.fields.expansions.PlaneWaveExpansion attribute)

 	(smuthi.fields.expansions.SphericalWaveExpansion attribute)

 	coefficients_tlm() (smuthi.fields.expansions.SphericalWaveExpansion method)

 	compatible() (smuthi.fields.expansions.PiecewiseFieldExpansion method)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	(smuthi.fields.expansions.SphericalWaveExpansion method)

 	compute_coupling_matrix() (smuthi.linearsystem.linear_system.LinearSystem method)

 	compute_initial_field_coefficients() (smuthi.linearsystem.linear_system.LinearSystem method)

 	compute_near_field() (in module smuthi.postprocessing.graphical_output)

 	compute_t_matrix() (smuthi.linearsystem.linear_system.LinearSystem method)

 	(smuthi.particles.AnisotropicSphere method)

 	(smuthi.particles.CustomParticle method)

 	(smuthi.particles.FiniteCylinder method)

 	(smuthi.particles.LayeredSpheroid method)

 	(smuthi.particles.Particle method)

 	(smuthi.particles.Sphere method)

 	(smuthi.particles.Spheroid method)

 	
 	converge_angular_resolution() (in module smuthi.utility.automatic_parameter_selection)

 	converge_l_max() (in module smuthi.utility.automatic_parameter_selection)

 	converge_m_max() (in module smuthi.utility.automatic_parameter_selection)

 	converge_multipole_cutoff() (in module smuthi.utility.automatic_parameter_selection)

 	converge_neff_max() (in module smuthi.utility.automatic_parameter_selection)

 	converge_neff_resolution() (in module smuthi.utility.automatic_parameter_selection)

 	convert_stl_to_fem() (in module smuthi.linearsystem.tmatrix.nfmds.stlmanager)

 	CouplingMatrixExplicit (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixPeriodicGridNumba (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixRadialLookup (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixRadialLookupCPU (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixRadialLookupCUDA (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixVolumeLookup (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixVolumeLookupCPU (class in smuthi.linearsystem.linear_system)

 	CouplingMatrixVolumeLookupCUDA (class in smuthi.linearsystem.linear_system)

 	create_k_parallel_array() (in module smuthi.fields)

 	create_neff_array() (in module smuthi.fields)

 	current() (smuthi.initial_field.DipoleSource method)

 	CustomParticle (class in smuthi.particles)

D

 	
 	default_polar_angles (in module smuthi.fields)

 	default_Sommerfeld_k_parallel_array (in module smuthi.fields)

 	DipoleCollection (class in smuthi.initial_field)

 	DipoleSource (class in smuthi.initial_field)

 	direct_coupling_block() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	direct_coupling_block_2D_from_hash_table() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	direct_coupling_block_3D_from_hash_table() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	direct_coupling_block_pvwf_mediated() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	direct_coupling_matrix() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	dissipated_power() (smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	
 	dissipated_power_alternative() (smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	dissipated_power_homogeneous_background() (smuthi.initial_field.DipoleSource method)

 	diverging() (smuthi.fields.expansions.FieldExpansion method)

 	(smuthi.fields.expansions.PiecewiseFieldExpansion method)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	(smuthi.fields.expansions.SphericalWaveExpansion method)

 	dx_xh() (in module smuthi.utility.math)

 	dx_xj() (in module smuthi.utility.math)

E

 	
 	electric_field() (smuthi.fields.expansions.FieldExpansion method)

 	(smuthi.fields.expansions.PiecewiseFieldExpansion method)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	(smuthi.fields.expansions.SphericalWaveExpansion method)

 	(smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	(smuthi.initial_field.InitialPropagatingWave method)

 	electric_field_amplitude() (smuthi.postprocessing.far_field.FarField method)

 	
 	enable_gpu() (in module smuthi.utility.cuda)

 	ENDC (smuthi.utility.logging.bcolors attribute)

 	eval_BeLBe (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	evaluate() (in module smuthi.utility.automatic_parameter_selection)

 	evaluate_r_times_eikr (smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsFor_Not_Linux attribute)

 	(smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsForLinux attribute)

 	evaluate_scattered_field_stat_phase_approx() (in module smuthi.postprocessing.scattered_field)

 	extinction_cross_section() (in module smuthi.postprocessing.far_field)

F

 	
 	FAIL (smuthi.utility.logging.bcolors attribute)

 	FarField (class in smuthi.postprocessing.far_field)

 	FieldExpansion (class in smuthi.fields.expansions)

 	fileno() (smuthi.utility.logging.Logger method)

 	
 	FiniteCylinder (class in smuthi.particles)

 	flush() (smuthi.utility.logging.Logger method)

 	fresnel_r() (in module smuthi.layers)

 	fresnel_t() (in module smuthi.layers)

G

 	
 	g_function() (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	GaussianBeam (class in smuthi.initial_field)

 	
 	get_azimuthal_angles_array() (smuthi.initial_field.InitialField method)

 	get_k_parallel_array() (smuthi.initial_field.InitialField method)

 	get_separating_plane() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

H

 	
 	HEADER (smuthi.utility.logging.bcolors attribute)

I

 	
 	index() (smuthi.linearsystem.linear_system.SystemMatrix method)

 	index_block() (smuthi.linearsystem.linear_system.SystemMatrix method)

 	initial_intensity() (smuthi.initial_field.GaussianBeam method)

 	InitialField (class in smuthi.initial_field)

 	initialize_linear_system() (smuthi.simulation.Simulation method)

 	InitialPropagatingWave (class in smuthi.initial_field)

 	integral() (smuthi.postprocessing.far_field.FarField method)

 	interface_transition_matrix() (in module smuthi.layers)

 	
 	internal_field_piecewise_expansion() (in module smuthi.postprocessing.internal_field)

 	internal_mie_coefficient() (in module smuthi.linearsystem.tmatrix.t_matrix)

 	inverse_vector_rotation() (in module smuthi.utility.math)

 	is_degenerate() (smuthi.layers.LayerSystem method)

 	is_inside() (smuthi.particles.Particle method)

 	(smuthi.particles.Sphere method)

 	is_outside() (smuthi.particles.Particle method)

 	(smuthi.particles.Sphere method)

K

 	
 	k_parallel_grid() (smuthi.fields.expansions.PlaneWaveExpansion method)

 	k_z() (in module smuthi.fields)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	
 	k_z_grid() (smuthi.fields.expansions.PlaneWaveExpansion method)

L

 	
 	largest_lateral_distance() (smuthi.simulation.Simulation method)

 	layer_mediated_coupling_block() (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	layer_mediated_coupling_block_stat_phase_approx() (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	layer_mediated_coupling_matrix() (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	layer_number() (smuthi.layers.LayerSystem method)

 	layer_propagation_matrix() (in module smuthi.layers)

 	LayeredSpheroid (class in smuthi.particles)

 	LayerSystem (class in smuthi.layers)

 	
 	layersystem_scattering_matrix() (in module smuthi.layers)

 	layersystem_transfer_matrix() (in module smuthi.layers)

 	legendre_normalized() (in module smuthi.utility.math)

 	legendre_normalized_numbed (in module smuthi.utility.math)

 	LinearSystem (class in smuthi.linearsystem.linear_system)

 	Logger (class in smuthi.utility.logging)

 	LoggerIndented (class in smuthi.utility.logging)

 	LoggerMuted (class in smuthi.utility.logging)

 	lower_zlimit() (smuthi.layers.LayerSystem method)

M

 	
 	magnetic_field() (smuthi.fields.expansions.FieldExpansion method)

 	(smuthi.fields.expansions.PiecewiseFieldExpansion method)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	(smuthi.fields.expansions.SphericalWaveExpansion method)

 	(smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	(smuthi.initial_field.InitialPropagatingWave method)

 	
 	MasterMatrix (class in smuthi.linearsystem.linear_system)

 	matrix_inverse() (in module smuthi.layers)

 	matrix_product() (in module smuthi.layers)

 	Memoize (class in smuthi.utility.memoizing)

 	mie_coefficient() (in module smuthi.linearsystem.tmatrix.t_matrix)

 	multi_index_to_single_nfmds() (in module smuthi.linearsystem.tmatrix.nfmds.indexconverter)

 	multi_to_single_index (in module smuthi.fields)

 	mute_logger (smuthi.utility.logging.LoggerMuted attribute)

N

 	
 	nb_wig3jj() (in module smuthi.utility.math)

 	nfmds_to_smuthi_matrix (in module smuthi.linearsystem.tmatrix.nfmds.indexconverter)

 	numba_3tensordots_1dim_times_2dim (smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsFor_Not_Linux attribute)

 	(smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsForLinux attribute)

 	
 	numba_trapz (in module smuthi.linearsystem.particlecoupling.layer_mediated_coupling)

 	numba_trapz_3dim_array (smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsFor_Not_Linux attribute)

 	(smuthi.fields.expansions.PlaneWaveExpansion.OptimizationMethodsForLinux attribute)

 	number_of_layers() (smuthi.layers.LayerSystem method)

O

 	
 	OKBLUE (smuthi.utility.logging.bcolors attribute)

 	
 	OKGREEN (smuthi.utility.logging.bcolors attribute)

 	outgoing_spherical_wave_expansion() (smuthi.initial_field.DipoleSource method)

P

 	
 	Particle (class in smuthi.particles)

 	piecewise_field_expansion() (smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	(smuthi.initial_field.InitialField method)

 	(smuthi.initial_field.InitialPropagatingWave method)

 	PiecewiseFieldExpansion (class in smuthi.fields.expansions)

 	plane_vector_wave_function() (in module smuthi.fields.vector_wave_functions)

 	plane_wave_expansion (smuthi.initial_field.DipoleCollection attribute)

 	plane_wave_expansion() (smuthi.initial_field.DipoleSource method)

 	(smuthi.initial_field.GaussianBeam method)

 	(smuthi.initial_field.InitialField method)

 	(smuthi.initial_field.PlaneWave method)

 	PlaneWave (class in smuthi.initial_field)

 	
 	PlaneWaveExpansion (class in smuthi.fields.expansions)

 	PlaneWaveExpansion.OptimizationMethodsFor_Not_Linux (class in smuthi.fields.expansions)

 	PlaneWaveExpansion.OptimizationMethodsForLinux (class in smuthi.fields.expansions)

 	PlaneWaveExpansion.RawSliceOfField (class in smuthi.fields.expansions)

 	plot_layer_interfaces() (in module smuthi.postprocessing.graphical_output)

 	plot_particles() (in module smuthi.postprocessing.graphical_output)

 	power_flux_through_zplane() (in module smuthi.postprocessing.power_flux)

 	prepare() (smuthi.linearsystem.linear_system.LinearSystem method)

 	print_simulation_header() (smuthi.simulation.Simulation method)

 	propagated_far_field() (smuthi.initial_field.GaussianBeam method)

 	pwe_to_ff_conversion() (in module smuthi.postprocessing.far_field)

 	pwe_to_swe_conversion() (in module smuthi.fields.transformations)

 	python_to_smuthi_matrix (in module smuthi.linearsystem.tmatrix.nfmds.indexconverter)

R

 	
 	radial_coupling_lookup_table() (in module smuthi.linearsystem.particlecoupling.prepare_lookup)

 	radial_direct_pwe_mediated_coupling_lookup_table() (in module smuthi.linearsystem.particlecoupling.prepare_lookup)

 	read_refractive_index_from_yaml() (in module smuthi.utility.optical_constants)

 	readstl() (in module smuthi.linearsystem.tmatrix.nfmds.stlmanager)

 	reasonable_neff_waypoints() (in module smuthi.fields)

 	reasonable_Sommerfeld_kpar_contour() (in module smuthi.fields)

 	
 	reasonable_Sommerfeld_neff_contour() (in module smuthi.fields)

 	reference_z() (smuthi.layers.LayerSystem method)

 	response() (smuthi.layers.LayerSystem method)

 	right_hand_side() (smuthi.linearsystem.linear_system.TMatrix method)

 	rotate_t_matrix() (in module smuthi.linearsystem.tmatrix.t_matrix)

 	rotation_matrix() (in module smuthi.utility.math)

 	run() (smuthi.simulation.Simulation method)

S

 	
 	sanity_check() (smuthi.simulation.Simulation method)

 	save() (smuthi.simulation.Simulation method)

 	scattered_far_field() (in module smuthi.postprocessing.far_field)

 	scattered_field_piecewise_expansion() (in module smuthi.postprocessing.scattered_field)

 	scattered_field_pwe() (in module smuthi.postprocessing.scattered_field)

 	scattering_cross_section() (in module smuthi.postprocessing.far_field)

 	select_numerical_parameters() (in module smuthi.utility.automatic_parameter_selection)

 	set_default_angles() (smuthi.simulation.Simulation method)

 	set_default_contours() (smuthi.simulation.Simulation method)

 	set_default_initial_field_contour() (smuthi.simulation.Simulation method)

 	set_default_Sommerfeld_contour() (smuthi.simulation.Simulation method)

 	set_logging() (smuthi.simulation.Simulation method)

 	set_precision() (in module smuthi.layers)

 	set_reference_point() (smuthi.fields.expansions.PlaneWaveExpansion method)

 	show_far_field() (in module smuthi.postprocessing.graphical_output)

 	show_near_field() (in module smuthi.postprocessing.graphical_output)

 	show_scattered_far_field() (in module smuthi.postprocessing.graphical_output)

 	show_scattering_cross_section() (in module smuthi.postprocessing.graphical_output)

 	show_total_far_field() (in module smuthi.postprocessing.graphical_output)

 	Simulation (class in smuthi.simulation)

 	single_index_to_multi_nfmds (in module smuthi.linearsystem.tmatrix.nfmds.indexconverter)

 	size_format() (in module smuthi.linearsystem.particlecoupling.prepare_lookup)

 	smuthi.fields (module)

 	smuthi.fields.expansions (module)

 	smuthi.fields.expansions_cuda (module)

 	smuthi.fields.transformations (module)

 	smuthi.fields.vector_wave_functions (module)

 	smuthi.initial_field (module)

 	smuthi.layers (module)

 	smuthi.linearsystem (module)

 	smuthi.linearsystem.linear_system (module)

 	smuthi.linearsystem.linear_system_cuda (module)

 	smuthi.linearsystem.particlecoupling (module)

 	smuthi.linearsystem.particlecoupling.direct_coupling (module)

 	
 	smuthi.linearsystem.particlecoupling.layer_mediated_coupling (module)

 	smuthi.linearsystem.particlecoupling.prepare_lookup (module)

 	smuthi.linearsystem.particlecoupling.prepare_lookup_cuda (module)

 	smuthi.linearsystem.tmatrix (module)

 	smuthi.linearsystem.tmatrix.nfmds.indexconverter (module)

 	smuthi.linearsystem.tmatrix.nfmds.stlmanager (module)

 	smuthi.linearsystem.tmatrix.t_matrix (module)

 	smuthi.particles (module)

 	smuthi.postprocessing (module)

 	smuthi.postprocessing.far_field (module)

 	smuthi.postprocessing.graphical_output (module)

 	smuthi.postprocessing.internal_field (module)

 	smuthi.postprocessing.power_flux (module)

 	smuthi.postprocessing.scattered_field (module)

 	smuthi.simulation (module)

 	smuthi.utility (module)

 	smuthi.utility.automatic_parameter_selection (module)

 	smuthi.utility.cuda (module)

 	smuthi.utility.logging (module)

 	smuthi.utility.math (module)

 	smuthi.utility.memoizing (module)

 	smuthi.utility.optical_constants (module)

 	solve() (smuthi.linearsystem.linear_system.LinearSystem method)

 	Sphere (class in smuthi.particles)

 	spherical_hankel() (in module smuthi.utility.math)

 	spherical_vector_wave_function() (in module smuthi.fields.vector_wave_functions)

 	spherical_wave_expansion() (smuthi.initial_field.DipoleCollection method)

 	(smuthi.initial_field.DipoleSource method)

 	(smuthi.initial_field.InitialField method)

 	(smuthi.initial_field.InitialPropagatingWave method)

 	SphericalWaveExpansion (class in smuthi.fields.expansions)

 	Spheroid (class in smuthi.particles)

 	spheroids_closest_points() (in module smuthi.linearsystem.particlecoupling.direct_coupling)

 	swe_to_pwe_conversion() (in module smuthi.fields.transformations)

 	SystemMatrix (class in smuthi.linearsystem.linear_system)

T

 	
 	t_matrix_sphere() (in module smuthi.linearsystem.tmatrix.t_matrix)

 	TMatrix (class in smuthi.linearsystem.linear_system)

 	top() (smuthi.postprocessing.far_field.FarField method)

 	total_far_field() (in module smuthi.postprocessing.far_field)

 	
 	total_scattering_cross_section() (in module smuthi.postprocessing.far_field)

 	transformation_coefficients_vwf() (in module smuthi.fields.transformations)

 	translation_block() (in module smuthi.fields.transformations)

 	translation_coefficients_svwf() (in module smuthi.fields.transformations)

 	translation_coefficients_svwf_out_to_out() (in module smuthi.fields.transformations)

U

 	
 	UNDERLINE (smuthi.utility.logging.bcolors attribute)

 	update_contour() (in module smuthi.utility.automatic_parameter_selection)

 	
 	update_lmax_mmax() (in module smuthi.utility.automatic_parameter_selection)

 	upper_zlimit() (smuthi.layers.LayerSystem method)

V

 	
 	valid() (smuthi.fields.expansions.FieldExpansion method)

 	(smuthi.fields.expansions.PiecewiseFieldExpansion method)

 	(smuthi.fields.expansions.PlaneWaveExpansion method)

 	(smuthi.fields.expansions.SphericalWaveExpansion method)

 	
 	vector_rotation() (in module smuthi.utility.math)

 	volumetric_coupling_lookup_table() (in module smuthi.linearsystem.particlecoupling.prepare_lookup)

W

 	
 	WARNING (smuthi.utility.logging.bcolors attribute)

 	wavenumber() (smuthi.layers.LayerSystem method)

 	wigner_D() (in module smuthi.utility.math)

 	wigner_d() (in module smuthi.utility.math)

 	write() (smuthi.utility.logging.Logger method)

 	
 	write_blue() (in module smuthi.utility.logging)

 	write_green() (in module smuthi.utility.logging)

 	write_header() (in module smuthi.utility.logging)

 	write_red() (in module smuthi.utility.logging)

 	writefem() (in module smuthi.linearsystem.tmatrix.nfmds.stlmanager)

Sommerfeld integrals

This section contains background information about deflected integral contours in Smuthi.
It is not strictly necessary to read the below explanations.

Singularities and contour deflection

When computing the layer system mediated multiple scattering interaction between particles, Smuthi evaluates so-called Sommerfeld integrals.
These integrals run over the in-plane wave-vector of a plane wave expansion of the scattered field. When the in-plane wave-vector is expressed
in polar coordinates, the integral over the anglular coordinate can be done analytically (see chapter 3 of [Egel 2018]),
such that the software is left with the numerical evaluation of 1D integrals over the radial component of the in-plane wave-vector (or shortly, the “in-plane wavenumber”):

\[\int_0^\infty f(\kappa) \mathrm{d}\kappa\]

with \(\kappa = \sqrt{k_x^2+k_y^2}\), and where \(f(\kappa)\) includes terms representing the layer system response.

A straightforward approach to the numeric integration would be to evaluate the integrand along an equidistant grid \(\kappa_i=i\Delta\kappa\) for \(i=0,\ldots,\kappa_\mathrm{max}/\Delta\kappa\) and then apply e.g. the trapezoidal rule to compute the integral.

However, in the vicinity of waveguide mode and branch point singularities the integrand \(f(\kappa)\) is a rapidly varying function of \(\kappa\) such that a very fine sampling of the integrand would be required in order to achieve a reasonable accuracy. This fact is illustrated in the below figure (taken from [Egel 2018]):

[image: ../../_images/sommerfeld.PNG]
The left figure shows the complex \(\kappa\)-plane, in which the integration path from \(\kappa=0\) to \(\kappa=\infty\) appears as a straight (dashed) line.
The location of waveguide mode singularities of the layer system response is marked with orange and red symbols. The less absorbing a slab waveguide is, the nearer are
the singularities to the real axis, and in the case of lossless materials, the singularities are right on the real \(\kappa\)-axis.

The right plot (dotted red and orange lines) illustrates the effect that the vicinity of the waveguide mode singularities has on the integrand of the Sommerfeld integrals: the integrand function
shows distinct peaks (note the logarithmic scale) which complicate the numerical evaluation of the integrals. Note that, even if the layered medium
does not support waveguide modes (e.g., a single interface between ambient and substrate half spaces), branch point singularities can lead to issues.

A simple strategy to avoid the vicinity of the singularities is to integrate along a complex contour which is deflected away from the real axis into the lower complex half plane. As the waveguide mode singularities as well as the branch cuts associated with square roots are located in the upper complex half plane, the integrand is an analytical function in the lower half plane. By virtue of Cauchy’s theorem, the integral along the deflected contour thus yields the same result as along the real axis, but it is better suited for numerical evaluation.

The left part of the above figure shows such a deflected contour as a gray solid line (a rectangular deflection into the negative imaginary avoids the region that is close to the singularities. In the right part of the above figure, you can see the effect that the deflection has on the integrand (solid red and orange lines). As you can see, the integrand is
much smoother and less problematic for numerical integration.

Effective refractive index

Smuthi features Sommerfeld contours with a rectangular deflection as depticted in the above figure. Instead of \(\kappa\) (which has the dimension of an inverse length),
the contour is sometimes parameterized with respect to the dimensionless effective refractive index

\[n_\mathrm{eff} = \frac{c \kappa}{\omega},\]

where \(c\) is the vacuum speed of light and \(\omega\) is the angular frequency. The advantage is that, in terms of \(n_\mathrm{eff}\), the location of
the singularities can be easily estimated:

	branch point singularities can exist at \(n_\mathrm{eff}=n_i\), where \(n_i\) are the refractive indices of the layered medium

	waveguide mode singularities can exist at \(n_\mathrm{cladding, max} \leq n_\mathrm{eff} \leq n_\mathrm{core, max}\), where \(n_\mathrm{cladding, max}\) is the
highest of the refractive indices of the outer layers and \(n_\mathrm{core, max}\) is the highest of the refractive indices of the inner layers
(in fact, TM modes can also exist at \(n_\mathrm{eff} \gt n_\mathrm{core, max}\), but in that case they are usually so strongly damped, that they do no harm to the numerical integration).

Example

A layer system consisting of a (semi-infinite) substrate with \(n=1.52\), covered with a thin film of some high-index material with \(n=2.1\) which is finally topped with a (semi-infinite) air layer can yield branchpoint singularities at \(n_\mathrm{eff}=1\), \(n_\mathrm{eff}=1.52\) and \(n_\mathrm{eff}=2.1\) as well as waveguide mode singularities between \(n_\mathrm{eff}=1.52\) and \(n_\mathrm{eff}=2.1\).

Setting up a simulation

[image: ../../../_images/drawing1.png]
This example is a minimal simulation, the “hello world” of Smuthi.
It investigates scattering by a single glass sphere on a glass substrate and evaluates the total scattering cross section.

Click here
to download the Python script.

[image: ../../../_images/console_screenshot.PNG]
The console output should look like in the above image.

Plotting the near field

[image: ../../../_images/norm_E.png]
[image: ../../../_images/E_y.gif]
This example contains the simulation of a plane wave scattered by three polydisperse spheres
embedded in a thin film on a glass substrate under air. Click here
to download the Python script.

After the simulation has run, the electric field distribution is evaluated in a post processing step.
Click on the following link to view the API documentation of the function that is used to calculate and plot the fields.
smuthi.postprocessing.graphical_output.show_near_field()

The left sphere is made from a dielectric material, the middle sphere is made from air, and the right sphere is made of metal.
In the resulting plots, we can see that the field inside the metal sphere is close to zero (as expected).

Some notes regarding run time

The evaluation of the electric field can take a considerable time. With the following measures, you can reduce the run time of electric field evaluations:

	Use a graphics card. If you have an NVIDIA gpu available (doesn’t need to be a fancy one), you can speedup calculations considerably.
See the installation diretions for GPU-acceleration (optional)

	Play with the resolution of the plots. You can also use interpolation to produce plots with a smooth appearance even if the fields
were evaluated on a coarse grid. However, be cautions as this can evoke the false impression of a finely resolved simulation result!

	Reduce the sampling of the k_parallel and azimuthal_angles arrays used for the plane wave expansions of the fields (to do: more explanation)

Plotting the far field

This example contains the simulation of a plane wave scattered by a spiral of fifteen glass spheres on a glass substrate under oblique incidence.
Click here
to download the Python script.

	
[image: ../../../_images/top_2d.png]

ambient DSCS

	
[image: ../../../_images/top_1d.png]

ambient DSCS (integrated over \(\alpha\))

	
[image: ../../../_images/bottom_2d.png]

substrate DSCS

	
[image: ../../../_images/bottom_1d.png]

substrate DSCS (integrated over \(\alpha\))

After the simulation has run, the differential scattering cross section is evaluated in a post processing step.
The left column shows the 2D-differential scattering cross section, \(\mathrm{DSCS}(\alpha, \beta) = \frac{\mathrm{dSCS}}{\mathrm{d}\Omega}\),
whereas the right column shows the 1D distribution (i.e., the integral over the azimuthal direction coordinate), \(\mathrm{DSCS}(\beta) = \frac{\mathrm{dSCS}}{\mathrm{d}\cos\beta}\).

In the substrate far field, the critical angle is visible as a ring-shaped feature.

Click on the following link to view the API documentation of the function that is used to calculate and plot the fields.
smuthi.postprocessing.graphical_output.show_scattering_cross_section()

Non-spherical particles

[image: ../../../_images/drawing2.png]
This example demonstrates how to define non-spherical particles (a spheroid, a cylinder and a custom particle defined by an STL file).

Click here
to download the Python script and here to download the STL file for the cube.

Automatic parameter selection

This example contains the simulation of a plane wave (oblique incidence), scattered by a spiral of nine aluminum disks on a thin-film waveguide structure supported by a glass substrate
Click here
to download the Python script.

Test balloon simulation

The first part of the script runs a test balloon simulation, where the ensemble of nine disks is replaced by a single disk. An automatic parameter selection is triggered for the test balloon simulation. See the section on Automatic parameter selection for a description of the feature.

Actual simulation

In the second part of the script, the resulting parameters (l_max, m_max, neff_max, neff_resolution) are copied to the actual simulation settings and the actual nine-particle simulation is run.

	
[image: ../../../_images/top_2D.png]

ambient DSCS

	
[image: ../../../_images/top_1D.png]

ambient DSCS (integrated over \(\alpha\))

	
[image: ../../../_images/bottom_2D.png]

substrate DSCS

	
[image: ../../../_images/bottom_1D.png]

substrate DSCS (integrated over \(\alpha\))

After the simulation has run, the differential scattering cross section is evaluated in a post processing step.
The left column shows the 2D-differential scattering cross section, \(\mathrm{DSCS}(\alpha, \beta) = \frac{\mathrm{dSCS}}{\mathrm{d}\Omega}\),
whereas the right column shows the 1D distribution (i.e., the integral over the azimuthal direction coordinate), \(\mathrm{DSCS}(\beta) = \frac{\mathrm{dSCS}}{\mathrm{d}\cos\beta}\).

In the substrate far field, the critical angle is visible as a ring-shaped feature.

Simulating many particles: A spiral of spheres

The configuration under study consists of a number of monodisperse dielectric spheres that are
arranged in the shape of a spiral on a glass substrate.
Please see the section on Solver settings for an overview on the different numerical approaches
to solve the system of linear equations governing a Smuthi simulation.

The given configuration of particles is particularly
well suited for the lookup table strategy, because all particle centers are on the same height (z-position)
such that the interaction matrix can be calculated using a one-dimensional lookup table,
see section 3.10.1.2 of Amos Egel’s PhD thesis [https://publikationen.bibliothek.kit.edu/1000093961/26467128].

[image: ../../../_images/vogel_spiral_200.png]
[image: ../../../_images/drawing3.png]
The spheres are illuminated by a plane wave from top under normal incidence. The resulting differential far field distribution of the scattered field for a spiral of 200 spheres is depicted below,
both in the top hemisphere (reflection, left) and in the bottom hemisphere (transmission, right).

[image: ../../../_images/dscs_200spheres_top.png]
[image: ../../../_images/dscs_200spheres_bottom.png]
Let us discuss the runtime required by the solution of the scattering problem. In the
tutorial script,
we loop over the particle number and solve the scattering problem either with …

	direct solution (LU factorization) and explicit calculation of the coupling matrix

	iterative solution and linear interpolation of 1D lookup table on the CPU

	iterative solution and linear interpolation of 1D lookup table on the GPU.

In either case we measure the time that the algorithm needs to set up and and solve the system of linear
equations.

[image: ../../../_images/runtime.png]
As the above figure illustrates, the direct solver is fastest for very small particle numbers (below ~10).
Linear interpolation from a lookup table in conjunction with the iterative solver runs much faster for
larger particle numbers. We can also see that the benefit from parallelization on the GPU starts to
overcompensate the time losses due to overhead from memory transfer starting from ~100 particles.

Note

All numbers depend on the hardware that you use. In addition, it makes a huge difference for the
CPU runtimes if numpy is configured to use all kernels of your workstation or just one of them for heavy calculations on
the CPU.

Multipole decomposition

[image: ../../../_images/extinction.svg]

Smuthi allows to analyze the contribution of individual multipole moments to the overall extinction cross section.
Click here
to download an example script which demonstrates this use case. It reproduces the results from
I.Sinev et al. “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films” [1].
In the mentioned example you can see decomposition of dipole extinction and conversion from spherical to Cartesian coordinates.
For this conversion we applied the following formulas
from C. Rockstuhl et al. “An electromagnetic multipole expansion beyond the long-wavelength approximation” [2]:

\[\begin{split}\mathbf{\hat{e}}_{1} = -\frac{\mathbf{\hat{x}} + i\mathbf{\hat{y}}}{\sqrt{2}}, \\
\mathbf{\hat{e}}_{0} = \mathbf{\hat{z}}, \\
\mathbf{\hat{e}}_{-1} = -\frac{\mathbf{\hat{x}} - i\mathbf{\hat{y}}}{\sqrt{2}}.\end{split}\]

	Hence

	
\[\begin{split}\mathit{p}_{x}^{\omega} = \frac{\mathit{a}_{1-1}^{\omega} - \mathit{a}_{11}^{\omega}}{\sqrt{2}}, \\
\mathit{p}_{y}^{\omega} = \frac{\mathit{a}_{1-1}^{\omega} + \mathit{a}_{11}^{\omega}}{\sqrt{2\mathit{i}}}, \\
\mathit{p}_{z}^{\omega} = \mathit{a}_{0}^{\omega}\end{split}\]

	and

	
\[\begin{split}\mathit{m}_{x}^{\omega} = \frac{\mathit{a}_{1-1}^{\omega} - \mathit{a}_{11}^{\omega}}{\sqrt{2}}, \\
\mathit{m}_{y}^{\omega} = \frac{\mathit{a}_{1-1}^{\omega} + \mathit{a}_{11}^{\omega}}{\sqrt{2\mathit{i}}}, \\
\mathit{m}_{z}^{\omega} = \mathit{a}_{0}^{\omega}\end{split}\]

Formulas for a general multipole also can be found in this paper.

[1] Laser Photonics Rev. 10, No. 5, 799–806 (2016), http://dx.doi.org/10.1002/lpor.201600055

[2] Optics Communications Volume 407, 15 January 2018, Pages 17-21, Appendix B, https://doi.org/10.1016/j.optcom.2017.08.064

Plotting the near field of periodic structures

This example visualizes the transmittance of a plane wave through a 200nm thick glass sheet that is perforated by a periodic arrangement of nanoholes.

Click here to download the Python script.

[image: ../../../_images/perforated_glass_sheet.png]

Dependend on the refractive index of the glass sheet’s ambient (on top, below and within the nanoholes), the power flows primarily through the glass sheet or the nanholes respectively. The animation below shows the z-component of the Poynting vector, normalized by the power of the initial plane wave, directly behind the glass sheet for different refractive indices of the ambient medium between \(1\leq n_{\mathrm{amb}}\leq 2.5\).

Once the optical density of the ambient is larger than of the glass sheet (\(n_{\mathrm{amb}}>n_{\mathrm{glass}}=1.5\)), the power flow is mainly confined within the nanoholes.

[image: ../../../_images/poynting_vector_z.gif]

Some notes regarding run time

To this end, the evaluation of the coupling matrix of periodic particle arrangements is soley available based on a just-in-time (jit) compilation by Numba. For low particle counts per unit cell, the jit-compilation requires a significant amount of time compared to the actual simulation time and therefore is highly inefficient.

In the future this could be circumvented by an option to toggle the jit-compilation on and off. However, once more complex unit cells or a sweep of various unit cells is considered, the jit-compilation provides a significant speed up.

The evaluation of the electric field can take a considerable time. With the following measures, you can reduce the run time of electric field evaluations:

	Use a graphics card. If you have an NVIDIA gpu available (doesn’t need to be a fancy one), you can speedup calculations considerably.
See the installation diretions for GPU-acceleration (optional)

Plane wave coupling for close non spherical particles

[image: ../../../_images/drawing4.png]

Fifteen periodic spheres in a slab

In this benchmark, a periodic particle arrangement of dielectric spheres (n=2),
embedded in a thin film (n=1.3) between a glass substrate (n=1.5) and air, is
excited by a plane wave. The tetragonal Bravais lattice has a periodicity of
\(P=|a_1|=|a_2|=1 \, \mathrm{\mu m}\) and hosts fifteen spheres of various sizes
per unit cell.

The transmittance of a plane wave \((\lambda=500 \, \mathrm{nm})\) as a function of
the incident polar angle is computed with Smuthi and compared to results from a
Comsol FEM simulation (see a snapshot of the Comsol model below).

[image: ../../../_images/comsol_screenshot.png]
The plot below compares the Smuthi results to the Comsol results in the far field of
the glass substrate.

[image: ../../../_images/transmittance_comparison_fifteen_periodic_spheres.png]
The agreement between Smuthi (solid blue line) and Comsol (dashed orange line) is excellent.
Only for highly oblique incidence the two solutions start to slightly deviate from each other.
Its explicit cause however remains open. We have reason to believe that numerical difficulties
arise for both techniques in case of highly oblique excitation.
On one side, the perfectly matched layers (PMLs) utilized in the finite
element simulations are known to reflect a considerable amount of light for oblique incidence.
On the other side, the oblique incidence \((|k_{\mathrm{in}\|}| \approx k)\) renders the
evaluation of Ewald lattice sums (utilized in Smuthi) more challenging.

Four particles in a slab waveguide

In this benchmark, the electric field of a horizontal dipole source emitting
at from inside a planalry layered medium consisting of a metallic layer (n=1+6i),
a high index dielectric layer (n=2, d=500nm) layer and another dielectric layer
(n=1.5).

The core layer includes four scattering particles with the shape of a
sphere, a prolate spheroid, an oblate spheroid and a finite cylinder.

[image: ../../../_images/drawing5.png]
[image: ../../../_images/comsol_screenshot1.png]
The electric field is computed with Smuthi and compared to results from a
Comsol FEM simulation (see a snapshot of the Comsol model to the right).

The below plot compares the Smuthi results to the Comsol results along a
probing line through the core layer.

[image: ../../../_images/Ey_along_line_high_n.png]
The agreement between Smuthi (lines) and Comsol (symbols) is good, both for the
real part(blue) and the imaginary part (red) of the field. We have reason to
believe that it is not constrained by Smuthi’s accuracy, but rather by the
accuracy of the FEM results which show fluctuations in a similar order of
magnitude as the deviations between the results when varying the simulation
volume size - possibly due to residual reflections from the “perfectly matched
layers”.

In the following, the field along a probing plane through the top layer is
compared.

[image: ../../../_images/imagEy_comsol_high_n.png]
[image: ../../../_images/imagEy_smuthi_high_n.png]
The left image shows \(\mathrm{Im}(\mathbf{E}_y)\) field computed with
Comsol, the right shows the field computed with Smuthi. The agreement is good.

[image: ../../../_images/realEy_comsol_high_n.png]
[image: ../../../_images/realEy_smuthi_high_n.png]
The left image shows \(\mathrm{Re}(\mathbf{E}_y)\) field computed with
Comsol, the right shows the field computed with Smuthi. Again, the agreement is
good.

Note

This site is currently under construction.

Single sphere in vacuum

Spectra

Comparison of spectra for a dielectric nanoparticle with \(r =
75\) nm and \(n=4\). Spectra from Smuthi:

[image: ../../../_images/Q_sca_spectra.png]
Spectra from nanoComposix online Mie calculator [https://nanocomposix.com/pages/tools] :

[image: ../../../_images/nanocomposix.png]

Near-field

Compare near-field plots for a silver nanoparticle. \(\lambda =
354\) nm, \(r = \lambda/20.0\), and \(\varepsilon_{Ag} =
-2.0 + 0.28i\)

Cross-section for polarization plane. Smuthi:

[image: ../../../_images/norm_E_fin_xz.png]
Scattnlay:

[image: ../../../_images/bulk-Ag-flow-R18-XZ-Eabs.png]
Cross-section perpendicular to polarization plane. Smuthi:

[image: ../../../_images/norm_E_fin_yz.png]
Scattnlay:

[image: ../../../_images/bulk-Ag-flow-R18-YZ-Eabs.png]

The smuthi.linearsystem.particlecoupling package

linearsystem.particlecoupling

Routines for multiple scattering. Some modules contain functions to
explicitly compute the coupling matrix entries. Others contains functions for
the preparation of lookup tables that are used to approximate the coupling
matrices by interoplation. The Cython folder has functions to calculate the
direct coupling block between two particles in the same layer using fast C
routines.

particlecoupling.direct_coupling

This module contains functions to compute the direct (i.e., not layer
mediated) particle coupling coefficients.

	
smuthi.linearsystem.particlecoupling.direct_coupling.direct_coupling_block(vacuum_wavelength, receiving_particle, emitting_particle, layer_system)

	
	Direct particle coupling matrix \(W\) for two particles that do not have intersecting circumscribing spheres.

	This routine is explicit.

To reduce computation time, this routine relies on two internal accelerations.
First, in most cases the number of unique maximum multipole indicies,
\((\tau, l_{max}, m_{max})\), is much less than the number of unique particles.
Therefore, all calculations that depend only on multipole indicies are stored in an
intermediate hash table. Second, Cython acceleration is used by default to leverage
fast looping. If the Cython files are not supported, this routine will
fall back on equivalent Python looping.

Cython acceleration can be between 10-1,000x faster compared to the Python
equivalent. Speed variability depends on the number of unique multipoles indicies,
the size of the largest multipole order, and if particles share the same z coordinate.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	receiving_particle (smuthi.particles.Particle) – Particle that receives the scattered field

	emitting_particle (smuthi.particles.Particle) – Particle that emits the scattered field

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the coupling takes place

	Returns

	Direct coupling matrix block as numpy array.

	
smuthi.linearsystem.particlecoupling.direct_coupling.direct_coupling_block_2D_from_hash_table(blocksize1, blocksize2, w, sph, k, dx, dy, dz, lmax1, lmax2, mmax1, mmax2, a5leg_hash_table, b5leg_hash_table, threaded=False)

	
	Subroutine to calculate the direct coupling between two particles

	that are in the same layer and have the same z coordinate. This
subroutine is called internally by direct_coupling_block.
If Cython is enabled then this subroutine is Cython accelerated.
Otherwise, the Python equivalent subroutine is used.

	Parameters

	
	blocksize1 (int) – Number of columns in the direct coupling block

	blocksize2 (int) – Number of rows in the direct coupling block

	w (ndarray) – Zero initialized direct coupling matrix block as numpy array

	sph (ndarray) – Zero initialized Hankel function matrix as numpy array

	k (complex) – Wavenumber in the shared media

	dx (float) – x-coordinate of the distance between the two particles

	dy (float) – y-coordinate of the distance between the two particles

	dz (float) – z-coordinate of the distance between the two particles

	lmax1 (int) – Largest polar quantum number of the recieving particle

	lmax2 (int) – Largest polar quantum number of the emitting particle

	mmax1 (int) – Largest azimuthal quantum number of the recieving particle

	mmax2 (int) – Largest azimuthal quantum number of the emitting particle

	a5leg_array (ndarray) – Hash table of the elements in \(A\) not dependent on \(/phi\) or \(kd\)

	b5leg_array (ndarray) – Hash table of the elements in \(B\) not dependent on \(/phi\) or \(kd\)

	threaded (bool) – Flag to enable multithreading (valid only for Cython where the Gil can be released). Currently hard coded to False.

	Returns

	Direct coupling matrix block as numpy array.

	Return type

	w (ndarray)

	
smuthi.linearsystem.particlecoupling.direct_coupling.direct_coupling_block_3D_from_hash_table(blocksize1, blocksize2, w, sph, k, dx, dy, dz, lmax1, lmax2, mmax1, mmax2, a5_hash_table, b5_hash_table, threaded=False)

	
	Subroutine to calculate the direct coupling between two particles

	that are in the same layer and do not have the same z coordinate. This
subroutine is called internally by direct_coupling_block.
If Cython is enabled then this subroutine is Cython accelerated.
Otherwise, the Python equivalent subroutine is used.

	Parameters

	
	blocksize1 (int) – Number of columns in the direct coupling block

	blocksize2 (int) – Number of rows in the direct coupling block

	w (ndarray) – Zero initialized direct coupling matrix block as numpy array

	sph (ndarray) – Zero initialized Hankel function matrix as numpy array

	k (complex) – Wavenumber in the shared media

	dx (float) – x-coordinate of the distance between the two particles

	dy (float) – y-coordinate of the distance between the two particles

	dz (float) – z-coordinate of the distance between the two particles

	lmax1 (int) – Largest polar quantum number of the recieving particle

	lmax2 (int) – Largest polar quantum number of the emitting particle

	mmax1 (int) – Largest azimuthal quantum number of the recieving particle

	mmax2 (int) – Largest azimuthal quantum number of the emitting particle

	a5_array (ndarray) – Hash table of the elements in \(A\) not dependent on \(/theta\), \(/phi\) or \(kd\)

	b5_array (ndarray) – Hash table of the elements in \(B\) not dependent on \(/theta\), \(/phi\) or \(kd\)

	threaded (bool) – Flag to enable multithreading (valid only for Cython where the Gil can be released). Currently hard coded to False.

	Returns

	Direct coupling matrix block as numpy array.

	Return type

	w (ndarray)

	
smuthi.linearsystem.particlecoupling.direct_coupling.direct_coupling_block_pvwf_mediated(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, k_parallel, alpha=None, beta=None)

	Direct particle coupling matrix \(W\) for two particles (via plane vector wave functions).
For details, see:
Dominik Theobald et al., Phys. Rev. A 96, 033822, DOI: 10.1103/PhysRevA.96.033822 or arXiv:1708.04808

The plane wave coupling is performed in a rotated coordinate system,
which must be chosen such that both particles can be separated by a plane
that is parallel to the xy-plane (such that the emitting particle is
entirely above that plane and the receiving particle is entirely below that
plane).

Two angles (alpha and beta) are required to specify the active rotation into
that coordinate system, i.e., the rotation which rotates the particle
locations such that the abovementioned condition is fulfilled.

If the angle arguments are omitted, Smuthi tries to estimate a suitable
separating plane.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	receiving_particle (smuthi.particles.Particle) – Particle that receives the scattered field

	emitting_particle (smuthi.particles.Particle) – Particle that emits the scattered field

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the coupling takes place

	k_parallel (numpy.array) – In-plane wavenumber for plane wave expansion

	alpha (float) – First Euler angle, rotation around z-axis, in rad

	beta (float) – Second Euler angle, rotation around y’-axis in rad

	Returns

	Direct coupling matrix block (numpy array).

	
smuthi.linearsystem.particlecoupling.direct_coupling.direct_coupling_matrix(vacuum_wavelength, particle_list, layer_system)

	Return the direct particle coupling matrix W for a particle collection in a layered medium.

	Parameters

	
	vacuum_wavelength (float) – Wavelength in length unit

	(list of smuthi.particles.Particle obejcts (particle_list) – Scattering particles

	layer_system (smuthi.layers.LayerSystem) – The stratified medium

	Returns

	Ensemble coupling matrix as numpy array.

	
smuthi.linearsystem.particlecoupling.direct_coupling.get_separating_plane(receiving_particle, emitting_particle)

	Estimate the orientation of a plane that separates two particles.
Such a plane always exists for convex particles.

For some special cases (pairs of spheroids, pairs of non-rotated cylinders)
a separating plane is constructed.

For all other cases, the orientation is chosen along the center-to-center
vector. Note that this choice is not guaranteed
to yield a correct PVWF coupling result.

Args:
receiving_particle (smuthi.particles.Particle): Receiving particle
emitting_particle (smuthi.particles.Particle): Emitting particle

	Retruns:

	Tuple containing Euler angles for the active rotation into a frame such
that the emitting particle is above some z-plane and the receiving particle
is below that plane:

	first rotation Euler angle alpha (float)

	second rotation Euler angle beta (float)

	
smuthi.linearsystem.particlecoupling.direct_coupling.spheroids_closest_points(ab_halfaxis1, c_halfaxis1, center1, orientation1, ab_halfaxis2, c_halfaxis2, center2, orientation2)

	Computation of the two closest points of two adjacent spheroids.
For details, see: Stephen B. Pope, Algorithms for Ellipsoids, Sibley School of Mechanical & Aerospace Engineering,
Cornell University, Ithaca, New York, February 2008

	Parameters

	
	ab_halfaxis1 (float) – Half axis orthogonal to symmetry axis of spheroid 1

	c_halfaxis1 (float) – Half axis parallel to symmetry axis of spheroid 1

	center1 (numpy.array) – Center coordinates of spheroid 1

	orientation1 (numpy.array) – Orientation angles of spheroid 1

	ab_halfaxis2 (float) – Half axis orthogonal to symmetry axis of spheroid 2

	c_halfaxis2 (float) – Half axis parallel to symmetry axis of spheroid 2

	center2 (numpy.array) – Center coordinates of spheroid 2

	orientation2 (numpy.array) – Orientation angles of spheroid 2

	Retruns:

	
	Tuple containing:

	
	closest point on first particle (numpy.array)

	closest point on second particle (numpy.array)

	first rotation Euler angle alpha (float)

	second rotation Euler angle beta (float)

particlecoupling.layer_mediated_coupling

This module contains functions to compute the layer mediated particle
coupling coefficients.

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.eval_BeLBe

	

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.g_function(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, k_parallel)

	
This function returns the function g_n(k_

	ho) as defined in equation (16) of the paper “A quick way to approximate

	a Sommerfeld-Weyl_type Sommerfeld integral” by Chew (1988) for the Sommerfeld integral for the layer-mediated
particle coupling (compare Amos Egel’s dissertation, equation (3.46)).
The purpose of this function is to allow for stationary phase approximation in the case of large lateral distances.

The use of this function is constrained to the important special case of particles above a (possibly layered)
substrate.

	Args:

	vacuum_wavelength (float): Vacuum wavelength \(\lambda\) (length unit)
receiving_particle (smuthi.particles.Particle): Particle that receives the scattered field (must be in top

layer)

	emitting_particle (smuthi.particles.Particle): Particle that emits the scattered field (must be in top

	layer)

layer_system (smuthi.layers.LayerSystem): Stratified medium in which the coupling takes place
k_parallel (float): In-plane wavenumber

	Returns:

	a tuple with the following items:
- g: a matrix of g_function as entries (dimension is blocksize x blocksize)
- rho: radial distance between particles
- delta_z: z-argument of e^(ik_z z) term
- bessel_order: matrix of positive numbers to be used as the order of Hankel functions

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.layer_mediated_coupling_block(vacuum_wavelength, receiving_particle, emitting_particle, layer_system, k_parallel='default', show_integrand=False)

	Layer-system mediated particle coupling matrix \(W^R\) for two particles. This routine is explicit, but slow.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	receiving_particle (smuthi.particles.Particle) – Particle that receives the scattered field

	emitting_particle (smuthi.particles.Particle) – Particle that emits the scattered field

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the coupling takes place

	k_parallel (numpy ndarray) – In-plane wavenumbers for Sommerfeld integral
If ‘default’, use smuthi.fields.default_Sommerfeld_k_parallel_array

	show_integrand (bool) – If True, the norm of the integrand is plotted.

	Returns

	Layer mediated coupling matrix block as numpy array.

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.layer_mediated_coupling_block_stat_phase_approx(vacuum_wavelength, receiving_particle, emitting_particle, layer_system)

	Compute the layer mediated coupling coefficients by means of the stationary phase approximation, as presented in
“A quick way to approximate a Sommerfeld-Weyl_type Sommerfeld integral” by W.C. Chew (1988).

The stationary phase approximation is expected to yield good results for particles with a large lateral distance.

Note: This function assumes that both particles (emitter and receiver) are located in the top layer of the layered
medium. For other cases, this function does not apply.
**

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength \(\lambda\) (length unit)

	receiving_particle (smuthi.particles.Particle) – Particle that receives the scattered field

	emitting_particle (smuthi.particles.Particle) – Particle that emits the scattered field

	layer_system (smuthi.layers.LayerSystem) – Stratified medium in which the coupling takes place

	Returns

	Stationary phase approximation for the layer mediated coupling matrix block as numpy array.

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.layer_mediated_coupling_matrix(vacuum_wavelength, particle_list, layer_system, k_parallel='default')

	Layer system mediated particle coupling matrix W^R for a particle collection in a layered medium.

	Parameters

	
	vacuum_wavelength (float) – Wavelength in length unit

	(list of smuthi.particles.Particle obejcts (particle_list) – Scattering particles

	layer_system (smuthi.layers.LayerSystem) – The stratified medium

	k_parallel (numpy.ndarray or str) – In-plane wavenumber for Sommerfeld integrals.
If ‘default’, smuthi.fields.default_Sommerfeld_k_parallel_array

	Returns

	Ensemble coupling matrix as numpy array.

	
smuthi.linearsystem.particlecoupling.layer_mediated_coupling.numba_trapz

	

particlecoupling.prepare_lookup

This module contains functionality to prepare lookups for the particle
coupling coefficients, which allows to efficiently treat large numbers of
particles.

	
smuthi.linearsystem.particlecoupling.prepare_lookup.radial_coupling_lookup_table(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None)

	Prepare Sommerfeld integral lookup table to allow for a fast calculation of the coupling matrix by interpolation.
This function is called when all particles are on the same z-position.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units

	particle_list (list) – List of particle objects

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	k_parallel (numpy.ndarray or str) – In-plane wavenumber for Sommerfeld integrals.
If ‘default’, smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float) – Spatial resolution of lookup table in length units. (default: vacuum_wavelength / 100)
Smaller means more accurate but higher memory footprint

	Returns

	lookup_table (ndarray): Coupling lookup, indices are [rho, n1, n2].
rho_array (ndarray): Values for the radial distance considered for the lookup (starting from negative

numbers to allow for simpler cubic interpolation without distinction of cases
at rho=0)

	Return type

	(tuple) tuple containing

	
smuthi.linearsystem.particlecoupling.prepare_lookup.radial_direct_pwe_mediated_coupling_lookup_table(vacuum_wavelength, rho_max, l_max, k_is, k_parallel='default', resolution=None)

	Prepare Sommerfeld integral lookup table to allow for a fast calculation of the coupling matrix by interpolation.
This function is called when all particles are on the same z-position.

This function uses PVWF representation of the coupling operator and is only
for the direct particle-particle lookup table for particles in close vicinity.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units

	rho_max (float) – Maximal horizontal particle displacement for which
direct coupling is evaluated via PVWFs

	l_max (int) – Maximal multipole degree

	k_is (complex) – Wavenumber of the scattering layer

	k_parallel (numpy.ndarray or str) – In-plane wavenumber for Sommerfeld integrals.
If ‘default’, smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float) – Spatial resolution of lookup table in length units. (default: vacuum_wavelength / 100)
Smaller means more accurate but higher memory footprint

	Returns

	lookup_table (ndarray): Coupling lookup, indices are [rho, n1, n2].
rho_array (ndarray): Values for the radial distance considered for the lookup (starting from negative

numbers to allow for simpler cubic interpolation without distinction of cases
at rho=0)

	Return type

	(tuple) tuple containing

	
smuthi.linearsystem.particlecoupling.prepare_lookup.size_format(b)

	

	
smuthi.linearsystem.particlecoupling.prepare_lookup.volumetric_coupling_lookup_table(vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None)

	Prepare Sommerfeld integral lookup table to allow for a fast calculation of the coupling matrix by interpolation.
This function is called when not all particles are on the same z-position.

	Parameters

	
	vacuum_wavelength (float) – Vacuum wavelength in length units

	particle_list (list) – List of particle objects

	layer_system (smuthi.layers.LayerSystem) – Stratified medium

	k_parallel (numpy.ndarray or str) – In-plane wavenumber for Sommerfeld integrals.
If ‘default’, smuthi.fields.default_Sommerfeld_k_parallel_array

	resolution (float) – Spatial resolution of lookup table in length units. (default: vacuum_wavelength / 100)
Smaller means more accurate but higher memory footprint

	Returns

	tuple containing:

w_pl (ndarray): Coupling lookup for z1 + z2, indices are [rho, z, n1, n2]. Includes layer mediated coupling.
w_mn (ndarray): Coupling lookup for z1 + z2, indices are [rho, z, n1, n2]. Includes layer mediated and

direct coupling.

	rho_array (ndarray): Values for the radial distance considered for the lookup (starting from negative

	numbers to allow for simpler cubic interpolation without distinction of cases
for lookup edges

sz_array (ndarray): Values for the sum of z-coordinates (z1 + z2) considered for the lookup
dz_array (ndarray): Values for the difference of z-coordinates (z1 - z2) considered for the lookup

	Return type

	(tuple)

particlecoupling.prepare_lookup_cuda

This module contains CUDA source code for the preparation of coupling
matrix lookups.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_images/comsol_screenshot.png

_images/comsol_screenshot1.png

_images/bulk-Ag-flow-R18-XZ-Eabs.png
11.6784

8.02889

—-40 -30 -20

_static/down-pressed.png

_images/bulk-Ag-flow-R18-YZ-Eabs.png
40

30

20

10

Y, nm
°

-10

-20

-30

IE|

-30

-20

-10

nm

10

20

30

40

8.27057

6.416

456144

2.70688

0.85232

_static/down.png

_images/delta_z.png
Az=2xdistance

_images/drawing.png
medium 3

scattered
light
medium 2 .

particles

-0- -0

N

incoming wave

_images/contour.png
e Nt Waypoints

_images/decision.png
many

Explicit matrix

LU factorization

Lookup interpolation

Iterative solver

_images/drawing1.png

_images/drawing2.png

_static/ajax-loader.gif

_images/drawing3.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 About Smuthi

 		
 Simulation method

 		
 Range of applications

 		
 Simulation output

 		
 Current limitations

 		
 License

 		
 How to cite this software

 		
 Contact

 		
 Acknowledgments

 		
 Getting started

 		
 Installation

 		
 Installing Smuthi under Ubuntu (recommended)

 		
 Installing Smuthi under Windows

 		
 Installing Smuthi from source

 		
 GPU-acceleration (optional)

 		
 Troubleshooting

 		
 Running a simulation

 		
 Create a simulation script

 		
 Running the simulation script

 		
 Simulation guidelines

 		
 Building blocks of a Smuthi simulation

 		
 Initial field

 		
 Layer system

 		
 Particles

 		
 The simulation class

 		
 Post processing

 		
 Physical units

 		
 Length units

 		
 Field strength units

 		
 Power units

 		
 Cross sections

 		
 Scattering cross section

 		
 Extinction cross section

 		
 Multipole cut-off

 		
 Complex integral contours

 		
 Default settings

 		
 Automatic contour definition

 		
 Manual contour definition

 		
 Guidelines for parameter selection

 		
 Automatic parameter selection

 		
 Parameter selection procedure

 		
 Simulations involving many particles

 		
 Solver settings

 		
 Custom particles

 		
 Creating a FEM file

 		
 Creating a FEM file using GMSH

 		
 Include custom particle in a Smuthi simulation

 		
 Plane wave coupling

 		
 Use PVWF coupling in a Smuthi simulation

 		
 Examples

 		
 Tutorials

 		
 Benchmarks

 		
 API

 		
 Top level modules

 		
 smuthi.simulation

 		
 smuthi.initial_field

 		
 smuthi.layers

 		
 smuthi.particles

 		
 The smuthi.fields package

 		
 fields

 		
 fields.expansions

 		
 fields.expansions_cuda

 		
 fields.transformatinos

 		
 fields.vector_wave_functions

 		
 The smuthi.linearsystem package

 		
 linearsystem

 		
 linearsystem.linear_system

 		
 linearsystem.linear_system_cuda

 		
 The smuthi.linearsystem.tmatrix package

 		
 tmatrix

 		
 tmatrix.t_matrix

 		
 The smuthi.linearsystem.tmatrix.nfmds package

 		
 nfmds.indexconverter

 		
 nfmds.stlmanager

 		
 The smuthi.postprocessing package

 		
 postprocessing

 		
 postprocessing.far_field

 		
 postprocessing.graphical_output

 		
 postprocessing.scattered_field

 		
 postprocessing.power_flux

 		
 The smuthi.utility package

 		
 utility

 		
 utility.automatic_parameter_selection

 		
 utility.cuda

 		
 utility.logging

 		
 utility.math

 		
 utility.memoizing

 		
 utility.optical_constants

 		
 Literature

_images/dscs_200spheres_bottom.png
dscs]oospgoqresibottom

_images/dscs_200spheres_top.png
dscs_ZOOggperes_tnp

180°

270°

_images/drawing4.png

_images/drawing5.png
probing plane

partrlclesO

dlpole source

dielectric layer
n=1.5

dielectric layer
n=2

metal layer
n = 1+6i

_images/flowchart_lmax.png
Run simulation

Evaluate detector
quantty

increment L_ex]
andn_raxby 1

Difference to
previous iteration,

larger than
tolerance
Smaller than

tolerance

_images/flowchart_many_particles.png
[Time-intensive many|
particle simulation

Find a et balloon
(ie., an equivalent

Run automatic

single particle
system

> parameter selection
fortest balloon

Use resulling
parameters for
loriginal many partcle
system

_images/email.png
amos.egel@gmail.com

_images/flowchart_mmax.png
Run simulation

Evaluate detector
quantty

Diference to

@ max = 1max

larger than
tolerance

Decrement
n_maxby 1

smaller than
tolerance

_images/flowchart_neffmax_relconv.png
Relative.
convergence
required?

Call 1_nax selection
= No

Call n_nax selection Run simulation

Evaluate detector
quantty

Difference to
previous iteration,

larger than
tolerance
Smaller than

tolerance

_images/flowchart_neffresol.png
Run simulation

Evaluate detector
quantty

Difference to
previous iteration,

larger than
tolerance
Smaller than

tolerance

_images/layers.png
4

_images/imagEy_comsol_high_n.png
y (nm)

1000

500

-500

~1000
~1000

-500

0
x (nm)

500

1000

_images/imagEy_smuthi_high_n.png
y (nm)

1000

500

-500

~1000
~1000

-500

0
x (nm)

500

1000

_images/norm_E_fin_xz.png
2 (length unit)

80

70

60

norm of total electric field

o
x (length unit)

_images/norm_E_fin_yz.png
2 (length unit)

80

70

60

norm of total electric field

o
¥ (length unit)

_images/nanocomposix.png
Mie Theory Calculator (Extinction per particle vs Wavelengtl

2.50e+5 nm"~2

2.00e+5 nm"~2

1.50e+5 nm "2

1.00e+5 nm "2

5.00e+4 nm~2

0.00m"~2

-5.00e-14 m"~2

B Extinction Cross Sectional Area
Absorption Cross Sectional Area
M Scattering Cross Sectional Area

400 450 500

[]

550 600 650 700

750

800

Core/Shell Refractive Indices (RI) only need an input when Core/Shell Type is Other

S

‘Shell Thickness (nm)

Medium RI

_images/norm_E.png
2 (length unit)

norm of total electric field

800

600

400

200

O
»

—600

-400

—200 o 200 400 600
x (length unit)

12

10

0.8

0.6

0.4

02

0.0

_images/perforated_glass_sheet.png
ambient

glass sheet

llllllll k= = - /
lllllllllll - Aol
1 \ \
(] \ | :
] \ | _
I 1 | ;
(]] | ;
1 1 _ ;
]] ; _
1 1 ; _
1 1 | !
1 I |)
\ ' \ I
' ! v
A W R A
IIIIIIIIII ~ - — > = o 4
IIIIIII b e e e e R e B =\ 1\
T 1 Y y)
1 \ | \ y —
]] 1 \ | _
1] 1 1 i ,
]] 0 ' : _
[} 1 1 1 ! :
1 1) I _ .
1] 1 I _ :
1 1 1) ! :
1 1 \ f i :
\] \ f ! :
\] \ P L,
g g
L N -
lllllllllllllllllllll Ioom
lllllllllll - Aol
71 , \
(] \ |)
] \ , _
I 1 | ;
(]] _ ;
1 1 _ ;
]] _ _
1 1 ; _
1 1 " !
1 I \ ,
1 (] \ \
' ! AN
A I
IIIIIIIIII ~ - > = o 4
llllll = e e R R e e 1
||||| 1 Y y)
1 \ | \ y]
]] 1 \ |]
(]] f \ [,
] 1 0 ' : _
[} 1 1 1 ! :
1 1) I _ .
]] 1 I _ .
1 1 1 \) :
1 1 \ f 1 :
\] \ f] :
\ (] \ P L,
A) g
L N -
IIIIIIIIIIIIIIIIIIIII A
IIIIIIIIIII - Aol
1 , \
(] \ |)
] \ k _
I 1 | ;
{] _ ;
1 1 , ;
] 1 ; _
1 1 _ _
1 1 \ !
1] | ,
] (] \ \
\ 1 \
\ v I
llllllllll ~ - > = o i
IIIIII = e e R N R\ 1
IIIII 1 I y A
1 \ I} \ y }
]] 1 \ |]
(]] P \ [,
1 1 ' ' _ ;
[} 1 1 1 _ :
1 1) I _ _
1] 1 I _ :
1 1 1 \) —
1 1 1 f 1 :
\] \ f | :
\] ' P L,
A) \ 9 S
lllllllllll ~

_images/poynting_vector_z.gif
y/P

z-component of Poynting vector

[
A

2.00

1.75

1.50

1.25

1.00

0.75

_images/particles.png

_images/realEy_smuthi_high_n.png
y (nm)

1000

500

-500

~1000 4—
~1000

-500

0
x (nm)

500

1000

_images/runtime.png
Solver time

10!

100

direct, CPU, total
direct, CPU, prep.
iter., CPU, total
iter., CPU, prep.
iter., GPU, total
iter., GPU, prep.

10!

Number of spheres

102

_images/projected_area.png
area perpendicular to
direction of propagation

area parallel to
layer system

OO0

_images/realEy_comsol_high_n.png
y (nm)

-500

~1000 4—
~1000

-500

0
x (nm)

500

1000

_images/top_1D.png
d_CS/d_cos(beta)

10%

10°

10!

scattering_cross_section_top

20 40 60
polar angle (degree)

80

_images/screenshot_gmsh.png
o

o

-

'\ Gmsh - C:\Users\ae\Desktop\cube.geo
File Tools Window Help

[Modules
[Geometry
[Mesh
[Define
1D
2D
3D
Optimize 3D
Optimize 3D (Netgen)
Set order 1
Set order 2
Set order 3
High-order tools
Refine by splitting
Partition
Unparttion
Smooth 2D
Recombine 2D
Reclassify 2D
[Experimental
[Reverse
[Delete
Inspect
Save
[Solver

ko

Move mouse and/or enter coordinates
[Press 'Shift' to hold position, ‘e to add box or 'q’ to abort]

1.5!

1.0

03
0.8

S0XYZ& 118 Done writing 'C\Userslae\Desktop\cube stl'

_images/smuthi_overview.png
t

user output

t

t

particle coupling

i-=--1 near field far field graphical output
utility | post processing
mathematical functions | |
CUDA helpers ;
other st : pR——
d Simulation | Y
field representations e
spherical waves plane waves
] initial field layer system particles

t

t

user input

t

T-matrix

NFM-DS
3rd party code
by Doicu et al.

_images/top_2d.png
180°

scattering_crgss_section_top

270°

10°

10%

10°

102

_images/transmittance_comparison_fifteen_periodic_spheres.png
transmittance

0.0 1

= SMUTHI
COMSOL

0

20

40
polar angle (°)

60

_images/top_1d.png
d_CS/d_cos(beta)

10°

‘i

10!

scattering_cross_section_top

20 40 60
polar angle (degree)

80

_images/top_2D.png
scattering_crgss_section_top

270°

10°

10%

10°

102

_images/vogel_spiral_200.png
3000

2000

1000

y (nm)
°

~1000

~2000

~3000

Vogel spiral with 200 spheres

o
o oo
0.0 50.°69,0 90 0700 ©
o o’ O 0.0
05 00 00 00~500,°,
00060%00Q20°:°
o [e) 009 00
0005507005560 0
0000 00 0.20% 0
06200 °670000%
00Y% 0000 o
0090095999%
O o0 0O 00
©"0% C0og

-3000 -2000 -1000 O 1000 2000 3000

x (nm)

_static/up-pressed.png

_static/up.png

_images/bottom_1d.png
10%

10°

d_CS/d_cos(beta)
g

10!

100

scattering_cross_section_bottom

20

40 60
polar angle (degree)

80

_images/bottom_2D.png
180°

scattering_crosg, section_bottom

270°

10°

10%

10°

102

_images/Q_sca_spectra.png
Qsca

12

10

Smuthi D = 150nm, index = 4.0

400

450

500 550 600 650 700
A.nm

750

800

_images/bottom_1D.png
d_CS/d_cos(beta)

10%

10°

10!

scattering_cross_section_bottom

20 40 60
polar angle (degree)

80

_images/bottom_2d.png
scattering_crosg, section_bottom

270°

10°

10%

10°

102

_images/E_y.gif
2 (length unit)

800

600

400

200

-400

—200 o
x (length unit)

y-component of total electric field

200

600

10

05

0.0

-1.0

_images/Ey_along_line_high_n.png
X (nm)

_static/file.png

_static/plus.png

_static/minus.png

