Literature

Main publication describing SMUTHI (if you use the software for a scientific publication, please cite this):

[Egel et al. 2021]

Amos Egel, Krzysztof M Czajkowski, Dominik Theobald, Konstantin Ladutenko, Alexey S Kuznetsov, Lorenzo Pattelli: “SMUTHI: A python package for the simulation of light scattering by multiple particles near or between planar interfaces”, Journal of Quantitative Spectroscopy and Radiative Transfer, 273, 2021, 107846, DOI: 10.1016/j.jqsrt.2021.107846

Periodic boundary conditions in SMUTHI are described here (if you use the software with periodic boundary conditions, please cite this):

[Theobald et al. 2021]

Theobald, Dominik, et al. “Simulation of light scattering in large, disordered nanostructures using a periodic T-matrix method.” Journal of Quantitative Spectroscopy and Radiative Transfer 272 (2021): 107802.

Dissertations about SMUTHI:

[Egel 2018]

Amos Egel: “Accurate optical simulation of disordered scattering layers for light extractionfrom organic light emitting diodes”, Dissertation, Karlsruhe (2018), DOI: 10.5445/IR/1000093961

[Theobald 2021]

Dominik Theobald: “Modeling and simulation of disordered light management structures in optoelectronic devices”, Dissertation, Karlsruhe (2021), DOI: DOI: 10.5445/IR/1000141626

https://publikationen.bibliothek.kit.edu/1000141626

Other publications that describe the theory behind Smuthi:

[Theobald 2017]

Dominik Theobald, Amos Egel, Guillaume Gomard, Uli Lemmer: “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles.” Physical Review A 96.3 (2017): 033822.

[Egel and Lemmer 2014]

Amos Egel, Uli Lemmer: “Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs”, Journal of Quantitative Spectroscopy and Radiative Transfer, 148, 2014, 165-176,DOI: 10.1016/j.jqsrt.2014.06.022

[Egel et al. 2016a]

Amos Egel, Siegfried W. Kettlitz, Uli Lemmer. “Efficient evaluation of Sommerfeld integrals for the optical simulation of many scattering particles in planarly layered media.” JOSA A 33.4 (2016): 698-706.

[Egel et al. 2016b]

Amos Egel, Dominik Theobald, Yidenekachew Donie, Uli Lemmer, Guillaume Gomard, G: “Light scattering by oblate particles near planar interfaces: on the validity of the T-matrix approach.” Optics express 24.22 (2016): 25154-25168.

[Egel et al. 2017b]

Egel, A., Eremin, Y., Wriedt, T., Theobald, D., Lemmer, U., & Gomard, G. (2017). Extending the applicability of the T-matrix method to light scattering by flat particles on a substrate via truncation of sommerfeld integrals. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 279-285.

This book describes the Null-Field Method with Discrete Sources (NFM-DS, if you use the software with non spherical particles, please cite this):

[Doicu et al. 2006]

Doicu, Adrian, Thomas Wriedt, and Yuri A. Eremin. Light scattering by systems of particles: null-field method with discrete sources: theory and programs. Vol. 124. Springer, 2006.

Other publications to which we refer in this user manual:

[Wiscombe 1980]

W.J. Wiscombe: “Improved Mie scattering algorithms”, Appl. Opt. 19, 1505-1509 (1980)

[Neves 2012]

Antonio A. R. Neves and Dario Pisignano: “Effect of finite terms on the truncation error of Mie series.” Optics letters 37.12 (2012): 2418-2420.

Publications that use Smuthi:

[Egel et al. 2017a]

Egel, A., Gomard, G., Kettlitz, S. W., & Lemmer, U. (2017). Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes. Journal of Optics, 19(2), 025605.

[Theobald et al. 2017]

Theobald, D., Egel, A., Gomard, G., & Lemmer, U. (2017). Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Physical Review A, 96(3), 033822.

[Warren et al. 2020]

Aran Warren, M. Alkaisi and C. Moore, “Design of 2D Plasmonic Diffraction Gratings for Sensing and Super-Resolution Imaging Applications,” 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 2020, pp. 1-6, doi: 10.1109/I2MTC43012.2020.9129161.

[Theobald et al. 2020]

Theobald, D., Yu, S., Gomard, G., & Lemmer, U. (2020). Design of Selective Reflectors Utilizing Multiple Scattering by Core–Shell Nanoparticles for Color Conversion Films. ACS Photonics.

[Czajkowski et al. 2020]

Czajkowski, Krzysztof M., Maria Bancerek, and Tomasz J. Antosiewicz. “Multipole analysis of substrate-supported dielectric nanoresonator arrays with T-matrix method.” arXiv preprint arXiv:2006.09137 (2020).

[Pidgayko et al. 2020]

Pidgayko, D. A., Sadrieva, Z. F., Ladutenko, K. S., & Bogdanov, A. A. (2020). Polarization-controlled selective excitation of Mie resonances of dielectric nanoparticle on a coated substrate. arXiv preprint arXiv:2011.06494.

[Warren et al. 2021]

Aran Warren, Maan M. Alkaisi, and Ciaran P. Moore. “Finite-size and disorder effects on 1D unipartite and bipartite surface lattice resonances”, Opt. Express 30, 3302-3315 (2022), DOI: 10.1364/OE.445414