Multipole cut-off

The scattering properties of each particle are represented by its T-matrix \(T_{plm,p'l'm'}\) where \(plm\) and \(p'l'm'\) are the multipole polarization, degree and order of the scattered and incoming field, respectively, see sections 3.3 and 2.3.2 of [Egel 2018]. In practice, the T-matrix is truncated at some multipole degree \(l_{max} \ge 1\) and order \(0 \le m_{max} \le l_{max}\) to obtain a finite system of linear equations.

Specify the cut-off parameters for each particle like this:

large_sphere = smuthi.particles.Sphere( ...
                                        l_max=10,
                                        m_max=10,
                                        ...)


small_sphere = smuthi.particles.Sphere( ...
                                        l_max=3,
                                        m_max=3,
                                        ...)

In general, we can say:

  • Large particles require higher multipole orders than small particles.

  • Particles very close to each other, very close to an interface or very close to a point dipole source require higher multipole orders than those that stand freely.

  • Larger multipole cutoff parameters imply better accuracy, but also a quickly growing numerical effort.

  • When simulating flat particles near planar interfaces, the multipole truncation should be chosen with regard to the Sommerfeld integral truncation. See [Egel et al. 2017].

Literature offers various rules of thumb for the selection of the multipole truncation in the case of spherical particles, see for example [Neves 2012] or [Wiscombe 1980].

Otherwise, you can use Smuthi’s built-in automatic parameter selection feature to estimate a suitable multipole truncation, see section on Automatic parameter selection.